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ABSTRACT 
Volatility is the primary measure of risk in modern finance and volatility estimation and inference has 

attracted substantial attention in the recent financial econometric literature, especially in high-frequency analyses. 

High-frequency prices carry a significant amount of noise. Therefore, there are two volatility components 

embedded in the returns constructed using high frequency prices: the true volatility of the unobservable efficient 

returns and the volatility from the existence of microstructure noise. Researchers proposed several methodologies 

for estimating these two components but each of these estimators has its own pros and cons. however, some of 

them have higher rate of convergence. Multi-Scale Realized Volatility (MSRV) is one of these estimators that 

reported to have a high efficiency in estimating true realized volatility. In this paper, after estimating these two 

components through the MSRV approach, we investigate the relation between them. Our results suggest that 

there is a positive meaningful relation between microstructure noise and true realized volatility. 
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1. Introduction 
Noise can exist anywhere in economy (Black, 

1986), but in the financial literature, noise refers 

mostly to microstructure noise in prices. Noise in 

prices appears due to behavioral factors, or structural 

frictions, such as changes in supply and demand. In 

general, any form of temporary deviation in price from 

its fundamental value is called noise. The role of noise 

in financial markets is both positive and negative. 

Without noise, no financial market would exist 

because noise creates liquidity in financial markets 

(Black, 1986). Hu et al. research supports this 

hypothesis. They show that temporary price deviations 

involve important information about the level of 

liquidity in the overall market (Hu, Pan, & Wang, 

2013).  

Accurate real-time volatility forecasts are needed 

for many applications, such as the real-time pricing of 

options and real-time risk management of trading 

positions. In order to generate a forecast, however, we 

first need a good estimate of realized variance. On the 

one hand, without an efficient estimator of realized 

variance, it is hard to see how the performance of 

different forecasts can be reliably compared. On the 

other hand, it seems that a volatility forecasting model 

generates its best estimate of realized variance when 

supplied with its best measure. Microstructure noise 

can cause the series of price returns between trades to 

be auto-correlated; so the obvious estimator of realized 

variance is very biased (Gatheral & Oomen, 2010). 

The variance of continuously compounded returns 

depends on the variance of the underlying efficient 

returns and the variance of the microstructure noise 

components in returns. Both variance measures carry a 

fundamental economic significance. The variance of 

the efficient return process is a crucial ingredient in the 

practice and theory of asset valuation and risk 

management. The variance of the microstructure noise 

component reflects the market structure and the price 

setting behavior of market participants and thereby 

contains information about the market’s fine-grain 

dynamics (Bandi & Russell, 2006). Hence, in this 

paper, we try to determine the magnitude of the noise 

in the volatility estimates from high-frequency data 

and separate it from the price process. 

The existence of traders who trade for reasons 

other than information provides the required diversity 

to the market. Thus, noise-based trades are essential 

for market liquidity (Morawski, 2008). However, noise 

trades make prices deviate from their fundamental 

values. Therefore, as the amount of noise-based trades 

increases, the profitability of information-based trades 

will increases; however this only happens because 

prices have more noise. Other researchers such as 

DeLong et al. also argue that noise trading can lead to 

a large divergence between market prices and 

fundamental values (De Long J. B., Shleifer, 

Summers, & Waldmann, 1990). Hence, more noise 

trading can be accompanied with more volatility in 

prices. Therefore, after separating fundamental 

volatility from microstructure noise we investigate the 

relationship between true volatility and noise to see if 

more noise leads to more volatility or vice versa. 

 

2. Literature Review 
Volatility modeling has been a very active area of 

research in recent years. This interest is largely 

motivated by the importance of volatility in financial 

markets. Volatility estimates are widely studied as risk 

measures in many asset pricing models (e.g., see 

Adam et al. (2016) and Herskovic et al. (2016)). Also 

volatility enters option pricing models (e.g., see Song 

& Xiu (2016), Carr & Wu (2016) and Alòs & León 

(2016)). This very active area of research resulted in 

the development of several types of models. These 

alternative models try to account for different stylized 

facts documented in the literature. Autoregressive 

Moving Average (ARMA) models, Autoregressive 

Conditional Heteroscedasticity (ARCH) models, 

Stochastic Volatility (SV) models, Regime Switching 

models and Threshold models are the most well-

known ones in the literature. Stochastic volatility 

models treat volatility as an unobserved variable which 

is assumed to follow a certain stochastic process. 

These models are able to overcome some of the 

drawbacks of GARCH models (Satchell & Knight, 

2011). These models are usually designed to estimate 

the daily, weekly, or monthly volatility using data 

sampled at the same frequency. However, thanks to the 

widespread availability of databases providing the 

intraday prices of financial assets econometricians 

have considered using data sampled at a very high 

frequency to compute ex-post measures of volatility at 

a lower frequency. This method is known as realized 

volatility approach (Bauwens, Hafner, & Laurent, 

2012). In other words, when computing realized 

volatility, the aim is to use high-frequency price 

observations to construct an efficient ex post estimate 
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of the low-frequency return variance, i.e., the variance 

of returns measured over a horizon that is relatively 

long compared to the frequency of observation and 

that is unaffected by the microstructure effects 

potentially present in the high-frequency prices 

(Gatheral & Oomen, 2010). However, a major problem 

in estimating realized volatility using high-frequency 

data is how to estimate the volatility consistently and 

efficiently, when the observed asset returns contain 

error or noise, for example, in the form of 

microstructure noise (Zhang, 2006) because the 

realized volatility is sensitive to market microstructure 

noise and the distortions induced by market 

microstructure noise increase with the sampling 

frequency (Hansen & Huang, 2016). This issue has 

been addressed in the recent literature by separating 

microstructure noise from volatility. 

There are two main approaches to separating noise 

from volatility. Studies performed in quote-driven 

markets usually use market makers quotes. They argue 

that it is common practice in the realized variance 

literature to use midpoints of bid-ask quotes or volume 

weighted mid-quote as measures of the true prices. 

While these measures are affected by residual noise, 

they are generally less noisy measures of the efficient 

prices than are transaction prices because they do not 

suffer from bid-ask bounce effects (see, e.g., Bandi & 

Russell (2008) and (2006), Hansen & Lunde (2006), 

Mancino & Sanfelici (2008), Griffin & Oomen 

(2011)). On the other hand, studies performed in order-

driven markets use transaction prices; although using 

linear weighting of the best bid and ask prices is also 

applicable to order-driven markets. In studies 

performed to estimate noise by using transactions 

prices, usually two popular types of estimators have 

been used. The first one is a parametric estimator, and 

the second one is a non-parametric estimator (Ait-

Sahalia & Xiu, 2012). The Maximum Likelihood 

Estimation (MLE) is the parametric estimator provided 

by Ait-Sahalia et al. (2005) which then improved by 

Xiu (2010) as a Quasi-Maximum Likelihood 

Estimation (QMLE) in order to emphasize model 

misspecification and keep the notation in line with the 

classic results of likelihood-based estimation under 

misspecified models. The non-parametric estimator is 

called the Two-Scales Realized Volatility (TSRV), 

which is provided by Zhang et al. (2005). However, 

TSRV is not efficient and converges to the true 

volatility only at the rate of n-1/6. Therefore, Zhang 

modified the TSRV and proposed a new estimator 

called Multi-Scale Realized Volatility (MSRV) which 

converges to the true volatility at the rate of n-1/4 

(Zhang, 2006). Although, some other studies like 

Barndorff‐Nielsen et al. (2008) and Barndorff-Nielsen 

et al. (2011) proposed a realized kernel estimator, 

however, it turns out that the realized kernel is closely 

linked with TSRV and MSRV (Wang, 2016). To 

determine which one is a better estimator of noise in 

stock prices, Gatheral and Oomen (2010) compared a 

comprehensive set of estimators including the above 

estimators. According to their study, the QMLE and 

MSRV are among the best in terms of efficiency and 

robustness. However, because MSRV does not depend 

on the probability distribution, in the present paper, we 

use MSRV to estimate noise and realized volatility. 

You can also see Seifoddini et al. (in press) for more 

information about the other approaches of estimating 

microstructure noise in high-frequency prices where 

we have estimated the noise through QMLE approach 

and compared the results with TSRV approach. 

Kupiec shows that in certain circumstances the 

risky asset's price exhibits excess volatility and agents 

engage in excess trading activity owing to the presence 

of destabilizing noise traders (Kupiec, 1996). Brown 

also shows that if noise traders affect prices, the risk 

they cause is volatility, then noise should be correlated 

with volatility (Brown, 1999). Blanchard et al. suggest 

that noise shocks explain a sizable fraction of short-run 

fluctuations (Blanchard, L'Huillier, & Lorenzoni, 

2013). Orlitzky shows that greater noise in financial 

markets typically invites more noise trading, which in 

turn leads to excess market volatility (Orlitzky, 2013). 

However, we can also argue that when the volatility of 

the market increases the speculative behavior of 

market participants would increase and more investors 

would enter the market to exploit the opportunities and 

emotional behaviors in market would increase and the 

noise in market would subsequently increase. 

Researchers such as Bandi and Russel (2006) and Ait-

Sahalia and Yu (2009) reported that microstructure 

noise is positively related with volatility. 

 

3. Methodology 
We estimate noise through a nonparametric 

approach, where volatility is left unspecified, 

stochastic, and we now explain the MSRV approach to 

separating the fundamental and noise volatilities in this 
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case. To do so, first we start with TSRV and then we 

extend it to MSRV.  

To demonstrate the idea, let Y be the observed log 

price of stocks. To include noise in our model, suppose 

that the      
 are noisy, and the corresponding true log 

prices are      
. Their relation can be modelled as: 

 

     
      

      
    (1) 

 

Where the      
 are i.i.d noise with mean zero and 

variance of α2 and are independent from the      
 

process. We assume that the process of log prices 

follows the Itō process (2006):  

 

               (2) 

 

Where Wt represents a Brownian motion, μ is a drift 

function, and σ is the diffusion coefficient.  

Our goal is to estimate ʃ0
T σt

2 dt. For simplicity, we call 

ʃ0
T σt

2 dt the integrated volatility, and denote it by 

<X,X>T = ʃ0
T σt

2 dt over a fixed time period [0,T ]. 

The usual estimator of <X,X>T is the realized volatility 

(RV): 
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In the absence of noise, [Y,Y ](n,1)
 consistently 

estimates <X,X>T. However, ignoring market 

microstructure noise leads to a dangerous situation 

when T →∞. After suitable scaling, RV based on the 

observed log-returns is a consistent and asymptotically 

normal estimator—but of the quantity 2nE[ε2] rather 

than of the object of interest, <X,X>T. With N = T/∆, 

we have 
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So     ⁄  [ ̂ ] becomes an estimator of E[ε2]=a2. 

Note, in particular, that  ̂  estimates the variance of 

the noise, which is essentially unrelated to the object 

of interest σ2 (Ait-Sahalia & Yu, 2009). 
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The recommendation in the literature has then 

been to sample sparsely at some lower frequency. 

However, one of the most basic lessons of statistics is 

that discarding data is, in general, not advisable. 

Zhang, Mykland and Ait-Sahalia (2005) proposed the 

TSRV which makes use of the full data sample, 

however delivers consistent estimators of both 

<X,X>T. TSRV, is based on subsampling, averaging, 

and bias-correction. By evaluating the quadratic 

variation at two different frequencies, averaging the 

results over the entire sampling, and taking a suitable 

linear combination of the result at the two frequencies, 

one obtains a consistent and asymptotically unbiased 

estimator of <X,X>T. TSRV has the form 
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TSRV’s construction is quite simple: first calculate 

[   ]      using all data. Then, partition the original 

grid of observation times, G = {t0, ..., tn} into 

subsamples, G(k), k = 1, ..., K , where n/K → ∞ as n 

→∞. For example, for G(1) start at the first observation 

and take an observation every 5 minutes; for G(2) start 

at the second observation and take an observation 

every 5 minutes, etc. Then we average the estimators 

obtained on the subsamples to calculate [   ]     .  

The TSRV estimator has many desirable features, 

but its rate of convergence is not satisfactory (Ait-

Sahalia & Yu, 2009), (Zhang, 2006). Therefore, Zhang 

(Zhang, 2006) modified TSRV and proposed the 

Multi-Scale Realized Volatility (MSRV). MSRV has 

the form 

 

 〈   ̂〉       ∑   [   ]       
       (8) 

 

where M is a positive integer greater than 2. 

Comparing to 〈   ̂〉      , which uses two time  

scales (1 and K), 〈   ̂〉       combines M different 

time scales. The weights ci, are selected so that 

〈   ̂〉       is asymptotically unbiased and has 

optimal convergence rate. The rationale is that by 

combining more than two time scales, we can improve 

the efficiency of the estimator. 

After estimating the noise part and the realized 

volatility of the price series, we investigate to see 
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whether volatility can explain the noise in the market. 

At the present, our hypothesis is that their relation has 

the form 

 

                      j=1,..,N   (9) 

 

where N is the number of companies in our sample. 

 

4. Results 
We performed our study on the shares of 

companies listed on the Tehran Stock Exchange, 

which is an order-driven market with no specialist or 

market maker. In studies conducted on financial 

markets microstructure, using high-frequency data, 

considering a 1-year time period can provide enough 

data for the results’ robustness (see for example, 

Doman (2010), Tissaoui (2012)) and Ahn & Cheung 

(1999). Accordingly, the time period considered in this 

research was from the beginning 2015 to the beginning 

of 2016. We set our maximum frequency to 5 minutes.  

Because we need high-frequency data, the main 

criterion in the selection of stocks was that they should 

have the lowest number of closing days, the highest 

amount of trade volume and the highest number of 

trading days because we require stocks whose trade 

volume is high enough to obtain the required 

observations at the determined frequency. Therefore, 

in order to select the sample stocks, we use stocks 

included in the list of the 50 most active companies 

provided by the Tehran Stock Exchange. The list of 

these companies is seasonally announced by the 

Tehran Stock Exchange, which ranks companies based 

on trade volume and the number of trading days. In 

our research, we select companies represented on this 

list for four subsequent seasons. The same measures 

were considered by studies that use high-frequency 

data, for example, Ait-Sahalia and Yu (2009) removed 

stocks with fewer than 200 daily trades from their 

sample. Table (1) provides the standard deviation, 

minimum and maximum number of trading days, 

number of trades per day, daily trading volume and 

daily volume of orders of the sample in the time period 

under study. 

We estimated the true realized volatility and noise 

level via the MSRV method. We set M=4 and we 

consider equal weights ci=0.25. Table (2) describes the 

specifications of the estimated noise and true realized 

volatility. 

 

Table 1. General characteristics of the study sample 

Stocks characteristics Max Min Average S.D 

Trading days 221 184 201 8 

Number of trades per day 13,128 40 355 4 

Daily trading volume 226 m 1,940 2 m 7 

Daily volume of orders 

placed in the trading system 
98,019 215 12,300 9 

The average time interval 

between orders 
240 0 196 10 

 

Table 2. Summary of findings about noise, RV and 

noise-to-signal ratio 

Variable name 
Variable 

symbol 
Average S.D 

Noise αj,t 0.0022 0.0019 

Realized volatility σj,t 0.3169 0.2289 

 

After estimating the microstructure noise in prices 

and their true realized volatility, first we investigate 

the existence of correlation between them. 

 

Table 3. Correlation Analysis between the 

estimated noise and realized volatility 

Correlation Analysis (balanced pairwise missing deletion) 

  α 

σ 

Correlation 0.17 

t-Statistic 6.97 

Probability 0.00 

 

As the correlation analysis presented in Table (3) 

demonstrates, there is a meaningful correlation 

between realized volatility and estimated noise. Now, 

we conduct a regression model to study the 

explanatory power of volatility on noise. We run the 

Redundant Fixed Effects Tests to account for firm-

specific heterogeneity. 

 

Table 4. Redundant Fixed Effects Test 

Test cross-section fixed effects 

Effects Test Statistic Prob. 

Cross-section F 4.8 0.00 

Cross-section Chi-square 61.8 0.00 

 

Redundant Fixed Effects Test results presented in 

Table (4) suggest that fixed effects model should be 



36 /   Realized Volatility in Noisy Prices: a MSRV approach 

Vol.2 / No.5 / Spring 2017 

used instead of pooled model. Now we run the stock 

fixed-effect regression. 

 

Table 5. The results of panel regression on noise 

and realized volatility 

Dependent Variable: A 

Variable Coef. Prob. 

C 0.0014 0.00 

SIGMA 0.0013 0.00 

R-squared 0.064 

Adjusted R-squared 0.056 

S.E. of regression 0.002 

Sum squared resid 0.007 

Log likelihood 780 

F-statistic 8.033 

Prob(F-statistic) 0.000 

Durbin-Watson stat 1.805 

 

According to the regression results presented in 

Table (5) there is a meaningful positive relation 

between noise and realized volatility. Although, the 

results also show a meaningful relation between noise 

and the intercept of the regression and that means 

volatility is not the only effective factor on 

microstructure noise. However, that actually makes 

sense because noise, by its nature, can arise due to a 

lot of known and unknown factors, and volatility is 

just one of them. 

 

5. Discussion and Conclusions 
In this paper we estimated the microstructure noise 

in prices and the true realized volatility using high-

frequency data. Then, we investigated the hypothesis 

that volatility is positively related to microstructure 

noise in prices. We conducted our research through 

Multi-scale realized Volatility approach and panel 

regression. According to our findings, we can 

conclude that more volatility in the prices of stocks is 

positively associated with an increase in the level of 

noise in prices. Our findings are in line with the 

findings of Ait-Sahalia and Yu (2009), and Bandi and 

Russell (2006) who reported a positive and significant 

relationship between estimated noise variance and 

efficient price variance. We infer that this could be due 

to the intensification of emotional decisions and the 

presence of noise traders in volatile market situations 

since there is a long history of evidence arguing that 

irrationality and noise trading increases along with 

market volatility. In an early study De long et al. 

(1989) asserted that empirical research has identified a 

significant amount of volatility in stock prices that 

cannot easily be explained by changes in 

fundamentals; one interpretation is that asset prices 

respond not only to news but also to irrational “noise 

trading.” since then, a lot of studies have been 

conducted on the effect of noise trading on market 

volatility, most of them in support of this hypothesis. 

In a recent study Aabo et al. (2017) decomposed 

volatility and investigated its relationship with noise 

trading and their findings shows that high market 

volatility on its own is associated with more 

mispricing and more specifically they find that larger 

values of absolute idiosyncratic volatility reflect an 

increasing role of noise traders. 

Our findings suggest that stock market investors 

should be more cautious of noisy prices in the volatile 

market situations and be aware of the increase in noise 

trading and irrational behaviors in these situations. We 

suggest that it would be better for investors to avoid 

making impulsive decisions in these situations because 

they may take unnecessary excess risks due to noise in 

prices that would decrease in less volatile market 

conditions. 
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