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ABSTRACT 
This paper focuses on a nonlinear stochastic model for financial simulation and forecasting based on 

assumptions of multivariate stochastic correlation, with an application to the European market. We present in 

particular the key elements of a structured hierarchical econometric model that can be used to forecast financial 

and commodity markets relying on statistical and simulation methods. The investment universe includes money-

market, fixed-income, inflation-linked bonds as well as equity and commodity indices. For each such investment 

opportunity a dedicated statistical model has been developed to generate future return paths describing the 

uncertainty the investment manager is facing over time. 
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Multivariate statistical method, Stochastic correlation, Monte Carlo simulation. 
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1. Introduction 
A crucial issue for consistent financial 

management is an accurate econometric modeling of 

market conditions, sometimes over long-term 

horizons. The dynamic behavior of market values is 

dependent on random factors such as interest and 

inflation rates, the economic cycle and correlation 

among assets. 

The recent sovereign crisis in Europe (2009-2011) 

has deeply affected previous financial markets 

conditions leading to a phase of unprecedented 

monetary easing and low interest rates, which unlike in 

the past, were not effective in recovering market 

stability and economic growth. In particular the 

European market suffered from increasing default risk 

of selected sovereign borrowers and increasing 

correlation and systemic risks in the Euro zone. In this 

situation, investments, which had long-term horizon 

plans, were faced with a downside potential of the 

financial markets in many countries. During such 

periods of market fluctuation, the adoption of a 

dynamic asset return model for securities exposed to 

market risk may play a crucial role. By focusing on 

market prices, we propose in this work a simulation 

approach to incorporate stochastic correlations in a 

two-layer multivariate statistical model. 

We consider a simulation approach based on a 

hierarchical econometric model with EU GDP and 

inflation rate considered as the basic driving forces 

from which further economic factors, such as short and 

long-term interest rate and asset returns, are derived. 

The financial risk factors and asset returns are modeled 

with parameters and correlations fitted to quarterly 

data. 

In this article, we develop and test a long-term 

asset returns simulation method in a two-level fashion 

with a dynamic stochastic correlation model and 

relying on a realistic asset universe, with interest-rate 

sensitive assets, such as government and inflation 

linked bonds, money market fund, equity, 

commodities. The stochastic model presented in 

section 1 extends [6], where a stochastic mean and 

constant correlation model was employed in an 

individual asset-liability management problem. 

Several statistical models are currently in use to 

simulate asset price and returns for the solution of 

decision problems under uncertainty. We refer to [21] 

which was among the first to introduce a cascade 

structure for asset price return simulation, later 

adopted by [11] with CASM (Cascade Asset 

Simulation Model) and [1]. A practical approach to 

include an assumption of stochastic correlations in a 

two-layer asset simulation and test its effectiveness are 

the main objectives of this article. 

Stochastic correlation was introduced as dynamic 

conditional correlation (DCC) model by [16] with 

analyzing the performance of the model for large 

covariance matrices. DCC method has been used in the 

econometric and financial problems. We cite some of 

the most relevant contributions [12, 3, 13, 22, 19, 23, 

15, 9]. 

The article is structured in 4 sections. In section 

2 we introduce stochastic correlation and long-term 

asset returns simulation in a two-layer structure. In 

section 3 we apply the model and show the returns 

simulation results and in Section 4 we conclude 

 

2. Asset Returns Simulation 
With simulation techniques, many possible 

future situations of a financial portfolio can be 

evaluated. In financial planning the unfolding 

uncertain future is represented by a large number of 

future paths from the simulation process which uses 

Monte Carlo simulation technique [17] to investigate 

the evolution of asset returns over planning horizon. 

This is an advantage of the simulation that we can 

use a relatively large number of scenarios for the 

future circumstances. 

For any financial planning problem, we need to 

know about behavior of our assets over time 

horizon. Since market conditions are changing over 

time and exposed to stochastic factors, we introduce 

an asset returns model in discrete-time with a 

modeling framework based on Two-Layers Asset 

Simulation Model (TLASM) with stochastic 

correlation among assets. The multivariate statistical 

model can reflect market dynamics during instability 

periods. 

 

2.1. Stochastic correlations 
As stated in [12], correlations are critical inputs for 

common tasks of financial management. A forecast of 

future correlations and volatilities is the basis of any 

pricing formula. Asset allocation and risk assessment 

also rely on correlations, however in this case a large 

number of correlations are often required. 

Construction of an optimal portfolio with a set of 
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constraints requires a forecast of the covariance matrix 

of the returns. Similarly, the calculation of the standard 

deviation of today’s portfolio requires a covariance 

matrix of all the assets in the portfolio. Simple 

methods such as rolling historical correlations and 

exponential smoothing are widely used. More complex 

methods such as varieties of multivariate GARCH or 

Stochastic Volatility have been extensively 

investigated in the econometric literature [20, 16, 2, 

13]. 

We consider a dynamic conditional correlation 

(DCC) model [12] and then present an approach for 

asset returns simulation consistent with such 

assumption. Let 
,i tr be the return of asset i I  at time 

t T . We indicate with 
tr  the return vector with 

components 
,i tr . Given r0 and ( , , )F P   as a 

generic random source of risk, for t=1,2,...,T , we 

define the stochastic differential equations for return 

process as: 

 

( , ) ( , ) ( )t t dtr r t dt t dte         

(1) 

 

where ( , )t dt   is an instantaneous drift. We 

assume in section 1.2 dedicated models for different 

asset indexes. ( , )t  is a random covariance matrix 

that admits decomposition 
t t t tD C D  and     

  (0,1)e N . 
tD is a diagonal matrix with elements 

,i t  

with 1,2,...,i I , includes the I returns’ conditional 

standard deviations which can be defined by any type 

of a univariate GARCH process, while 
,: { }t ij tC c

includes the time-varying correlation coefficients 

between asset i and asset j at time t . 

The DCC is a natural extension of the GARCH 

models. In the DCC model [12] the relationship 

between conditional correlations and conditional 

variance was obtained expressing the returns, ,i tr  as 

 

, , ,i t i t i tr     where  
, ~ (0,1)i t N . 

(2) 

 

We assume a Threshold Autoregressive 

Conditional Heteroskedasticity (TARCH) process of 

the first order for 
2

,i t . [18] and [24] introduced 

independently the TARCH models which allows for 

asymmetric shocks to volatility. According to [14], 

TARCH volatility process is a way of parametrizing 

the sign of the innovation that may influence the 

volatility in addition to its magnitude. 

In DCC model [12], the conditional correlation 

matrix is modeled as: 

 
0.5 0.5

t t t tC Q Q Q
 

  

(3) 

 

Where 
,{ }t ij tQ q is the conditional covariance 

matrix and 
tQ  is the diagonal matrix of the i th 

diagonal element of the 
tQ . Dynamics of 

tQ  can be 

consider with following the DCC model [12] 

assumption as:  

 

1 1 1(1  ) t t t tQ Q Q    
      

(4) 

 

where Q is the unconditional correlation matrix of

 . α and β are constant parameters such that 0,  

and 1   to ensure positive definiteness and 

stationarity, respectively. Accordingly, the variance-

covariance process dynamics can be expressed as 
0.5 0.5

( )t t t t t tD Q Q Q D
 

   

(5) 

1‌.1‌.  

2.2. Two-Layers Asset Simulation 

Model 
According to the figure 1, in this model we 

consider two layers structure, at the first layer we 

derive the relative risk factors then in the second layer 

compute the equity risk premium and returns of each 

asset class. 

Risk factors have essentially affect in the long-

term financial position of the portfolio return and need 

to be consider in the economic and financial modeling 

framework. Therefore, for the given investment 

universe we need to identify associated risk factors 

relevant to the set of investment opportunities. 
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Structure of the risk model includes all market 

variables adopted to derive the benchmarks’ evolution: 

money market benchmark, bond indexes, equity and 

commodity benchmarks [21, 4, 8, 1, 11, 10, 6]. 

Table 1 includes Euro area market benchmark 

indexes and the associated risk factors of each 

investment opportunities in this study. We consider 

inflation rate, GDP output gap and 12-month Euribor 

together with 10 years Euro interest rate as short and 

long-term interest rate in our risk factor modeling. 

Inflation and interest rates are two critically important 

risk-factors for any financial investment. In particular 

assets can suffer of inflation shocks because an 

inflation increase normally triggers an interest rate 

upshift thus negatively hitting the fixed income 

nominal assets. We refer here to the risk process as the 

random process of the financial factors embodying the 

risk sources of the problem [8, 5, 6]. 

We translate a set of continuous stochastic 

dynamics into a discrete event structure relies on a 

scenario tree labeling  

 

 
Figure 1: Structure of two layers asset simulation model 

 

scheme [7]. Nodes along the tree, for t T , are 

denoted by 
tn N . For t = 0 the root node 

(associated with the partition 
0 { , }N    , 

corresponding to the entire probability space) is 

labeled n = 1.  

        For t > 0 every 
tn N has a unique ancestor 

n− and, for t < T, a non-empty set of children nodes n+. 

We denote with 
nt  the time associated with node n. 

The set of all predecessors of node n : , ,...,0n n  is 

denoted by 
nP . From the statistical modeling 

viewpoint, first layer risk factors 
,j n plus equity risk 

premium 
n
  and then second layer asset price return 

,i nr are computed with multivariate Gaussian return 

model with autoregression and exogenous variables. 

Stochastic difference equation for risk factors 
,j n for j 

= 1,2,3,4 and equity risk premium 
n  for all 

tn N

are considered as follow: 

 

, , , r

j n j n j j r n

r j

t c e 


   
 

(6) 

 

where vector ,j n gives the following stochastic drift 

of the risk factors at nod n : 

 

1 1 1

0 1 21, 1,

2 2 2 2 2

0 1 2 1, 3 42, 1, 1,
,

3 3 3

0 1 2, 2 1,

4 4 4 4

0 1 4, 2 1, 3 2,

1

2

3

4

n n

nn n n
j n

n n

n n n

j

j

j

j

    

        


    

      

 

  

   


    
 

  
      

(7)

 

 

0 1 24, 2,n nn n
te                

(8) 
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Table 1: Market benchmarks and relative risk factors 

Investment Class Benchmark Risk factors 

Money market Euribor 12 month Inflation rate, economic cycle, 12-month short rate 

European Gov. bond JPM Global Emu Euro stock, interest rate, economic cycle 

- JPM Global ex-EMU Euro stock, inflation rate 

Inf. Link. bond Barclays Infl. Linked Euro stock, interest rate, inflation rate 

Equity MSCI Europe Index Stock risk premium, interest rate 

Commodity Dow Jones Comm. Euro stock, economic cycle, euro bond market 

 

The risk factors j  for j = 1,2,3,4 defined as: 
1

is the GDP output gap, 
2  is the inflation rate, 

3 is 

the short interest rate and 
4  is the long interest rate. 

In the model,  t  defines the time increment between 

nodes n− and n. Risk factors correlation is introduced 

directly on the realizations 
r

ne  of four standard normal 

variables through the Cholesky elements ,j rc  of the 

correlation matrix with normal distribution (0,1)N  

and illustrated in Table 3. 

The set of estimated coefficients and risk factors 

provides an input to the generate the asset returns 

scenarios and will determine the returns’ evolution 

over the long-term decision horizon. The asset 

returns simulation of each benchmark ,i nr  in each 

node 
tn N  for scenario generation can now be 

determined as following formulas for the different 

benchmark indexes:  

 

 Europe bonds: 

 

, 0 , , , ,,

i r

i n i n i n i r n ni n
r

r r t c e      

2,3,4i   

(9) 

 

where vector ,i n defined stochastic drift at node n as 

follows: 

2 2 2 2

1 2 5, 3 1, 4 4,

3 3 3

, 1 2 5, 3 2,

4 4 4 4

1 2 2, 3 4 4,5,

2

3

4

n n n

i n n n

n nn

r i

r i

r i

     

    

     

    


   
    


 (10) 

 

For the European bonds 
ir  (i = 2,3,4), we consider 

2r  

as JPM Global Government Bond EMU index, 
3r  for 

the JPM Global Government Bond ExEMU index and 

4  for the Barclays Euro Inflation Linked bond 

index. 

In the statistical models, coefficients show the 

dependence of the government bonds return with the 

stock risk premium. 

 

Equity: 

• MSCI Europe equity 

5, 5, , ,1,
( )n n n i r n nn

r

r r t c e       

(11) 

 

The equity return is modeled relying on the 

performance of the equity risk premium (see equation 

8) and short-term interest rate in Euro zone. The risk 

premium is depended on the long-term interest rate, 

inflation rate and economic cycle. 

 

Indirect real asset: 

• Commodities 

 
6 6 6 6

6, 1 2 5, 3 44, 1,n n n n
r r r          

6

5 2, 6, 6, ,

r

n n r n n

r

t c e       

(12) 
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The commodity return is evaluated by a stable 

relationship with the GDP output gap, inflation rate, 

equity market and Euro inflation linked bond yields. 

 

2.3. Statistical Assumptions and 

Estimation 
The economic and financial risk factors are modeled 

with parameters and correlations fitted to quarterly 

data in a two level TLASM fashion. 

We use delegate total return indices for the asset 

classes. A total return index includes the reinvestment 

of dividends in the case of stock markets and the gains 

or losses of the price variation in the case of bond 

markets, respectively. All of the mentioned data sets 

have been collected at a quarterly frequency through 

the Data-Stream source. Furthermore, for all data sets, 

the time-specified of past observed market data starts 

from January 1999 and ends in December 2015. The 

statistical coefficients are estimated through the 

method of ordinary least squares (OLS) (see table 2 

and 3). Risk factors correlation matrix estimated and 

reported in Table 4. 

 

3. Simulation Results 
The numerical results have been computed through 

a MATLAB R2014a for simulation and Excel as the 

input and output data collection. The simulation has 

been generated with 2048 number of paths at the 

horizon. 

We consider a discrete simulation model over the 

10-year planning horizon from Q1 2009 include 

investment universe based on the table 1. 

To show the complex nature of the output from 

TLASM with stochastic correlation, forward scenario 

tree generation of the corresponding asset class returns 

have been performed by back-tested analysis with 

quarterly data from Q1 2009 to Q4 2016. 

We show in figure 2 a set of output trees generated 

for representative asset index classes based on the 

introduced simulation model with stochastic -right 

side- versus constant correlation -left side- models. 

The simulation is generated across time with respect to 

observed market dynamic at each stage up to Q4 2015. 

The different techniques for simulation are ex-post 

analyzed on actual market dynamic with same 

estimated coefficients and assumption. 

We consider the periods of 2009 until 2016 which 

crisis, post crisis and recent market situation took 

place. In almost all cases the asset returns simulation 

with stochastic correlation includes actual market 

value over the simulation period seen to that date 

which includes also recent market instability. 

 

 

 

Table 2: Risk factors estimated coefficients and volatilities 

 0
 

1  
2  

3  
4  Vol. (%) 

Out-put gap 0.0002 1.8095 -0.8950 – – 1.14 

Inflation 0.0123 0.4317 -0.6236 1.4184 -0.8012 0.92 

Short rate 0.0391 -0.2483 0.5889 – – 1.53 

Long rate 0.0191 0.7749 0.0873 -0.4572 – 1.41 

Risk premium 1.0564 -13.2855 -21.2597 – – 20.07 

 

 

Table 3: Risk factors correlation matrix 

 Long rate Inflation Out-put gap Short rate 

Long rate 1.0000 0.6775 0.4203 0.8338 

Inflation 0.6775 1.0000 0.2336 0.6075 

Out-put gap 0.4203 0.2336 1.0000 0.6379 

Short rate 0.8338 0.6075 0.6379 1.0000 
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Table 4: Estimated coefficients for asset return models  

 0
 

1  
2  

3  
4  

5  

Bond EMU 0.3470 0.1126 -0.1293 -0.7485 -1.6853 – 

Bond ex-EMU 0.4212 0.0483 -0.0659 -0.8926 – – 

Infl. Link. bond – 0.1635 -0.2051 -0.1344 -1.9173 – 

Commodity – -0.0018 0.5862 1.3496 4.7175 -3.039 
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Figure 2: Asset returns scenario simulation of investment universe under constant correlation -left side and 

stochastic correlation -right side- (green trajectory is the mean scenario, purple and red trajectories 25% 

and 75% quantile of the distribution, respectively) with components related to the modelling of time series 

for commodities and financial markets. 

 

4. Conclusion 
We have presented a simulation approach for long-

term returns that, building on concepts from existing 

methods, integrates a set of economic and statistical 

requirements in a computationally efficient scheme. 

The method has been developed based on the idea of 

two-layer simulation model using stochastic 

correlations for financial problems, which may lead to 

a sufficient representation of the randomness 

underlying the decision-making process. This 

technique has been tested on actual market dynamic 

and we report evidence of its effectiveness compare to 

the method with constant correlation. Since there is 

correlation clustering changing dynamically during 

and after the crisis therefore introducing stochastic 

correlation among assets into simulation method is 

needed in order to approximate return distribution. We 

presented effectiveness result of returns distribution 

under stochastic correlation versus constant 

correlation. The numerical evidence supports this 

method to yield a good approximation of a distribution 

with a long-term planning horizon. The methodology 

can be adopted for the formulation of optimization 

problems in financial and commodities markets. 
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