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ABSTRACT 
We consider an asset-liability management (ALM) problem for a defined benefit pension fund (PF). The PF 

manager is assumed to follow a maximal fund valuation problem facing an extended set of risk factors:  due to 

the longevity of the    PF members, the inflation affecting salaries in real terms and future incomes, interest rates 

and market factors affecting jointly the PF liability and asset portfolio. The problem is formulated as a stochastic 

programming problem in discrete time and with a discrete set of relevant future economic and demographic 

scenarios. In real world applications, this class of decision problems under uncertainty leads to very large scale and 

complex management problems, due to pending regulatory constraints and the need to preserve the PF funding 

conditions. Dynamic stochastic programming is shown under such conditions to provide a natural and effective 

mathematical and numerical approach. 
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1. Introduction 
Asset Liability Management (ALM) is the process 

of finding optimal policies for long term investors 

which need to meet future obligations. The 

implemented strategy should be optimal both with 

respect to the financial resources and with respect to 

the liability of the real-life problem subject to a set of 

management and institutional constraints. In case of 

Pension funds ALM, the problem is highly stochastic 

due to the risky nature of future demographic, 

actuarial and economic variables such as financial 

returns, liability and macroeconomic indicators. It is 

so necessary to find a proper set of mathematical tools 

able to optimise the strategy considering the stochastic 

implications. Multistage stochastic programming 

(MSP) is an extension of mathematical programming 

in which some or all parameters have a stochastic 

nature. Traditional solutions methods for MSP 

required a discrete approximation of the underlying 

probability distribution governing the evolution of the 

random parameters in order to transform the problem 

into a deterministic equivalent representation. The 

deterministic representation can then be solved using 

traditional optimization algorithms or more specialised 

solvers which take advantage of the special structure of 

the problem. Advancements in computer technology 

and in algorithms efficiency enable increasing 

opportunities in modelling and solving these problems 

with long time horizons, a large number of decision 

variables and constraints and with sophisticated 

objective functions. As a result, MSP has emerged as a 

fruitful technique to deal with ALM problems for its 

flexibility in modelling real life specific features such 

as, friction markets with transaction costs and taxes, 

complex regulatory and management constraints and 

multi-target objective functions. 

Areas of applications where MSP has been 

successfully applied are asset allocation [46, 48], bank 

management [4, 34], fixed income portfolio 

management [2, 3, 16], insurance and pension fund 

companies [6, 7, 8, 11, 14, 17, 25] and minimum 

guarantee financial products [13]. Typically, dynamic 

ALM problems are formulated to find the optimal 

dynamic investment strategy which fulfils a set of 

constraints and maximise an expected utility function 

over an investment horizon with a given set of 

portfolio rebalancing periods. In some models also 

policy parameters, such as the optimal contribution rate 

in a pension fund, are considered as variables. 

When MSP models are numerically solved using a 

deterministic equivalent representation, a crucial role 

assumes the choice of the methodology through which 

the original distribution is approximated by discrete 

scenarios. Scenarios are usually represented by an 

event tree in which the nodes values represent the 

random parameters distributions. Mostly, scenario tree 

generation methods rely on four types of different 

approaches: Monte Carlo-based sampling [5, 6, 42], 

the moment matching method [9, 27, 28, 43], the 

sequential cluster [15, 22] and optimal discretisation 

methods based on some probability metrics such as the 

Wasserstein distance [23, 24, 37, 38, 40]. In Monte 

Carlo-based methods a conditional discrete sample is 

obtained from the theoretical continuous distribution at 

each node and in each stage starting from the root node 

in a forward fashion. Different variance reduction 

techniques have also been implemented in order to 

limit the approximation error. Moment matching 

methods focus the attention on the error minimisation 

between a certain set of moments of the original 

distribution function with those of the discrete 

approximation. The problem can be formulated as a 

non-linear system of equations or as a non-linear 

minimisation problem. Optimal discretisation methods 

attempt to minimise some probabilistic metric such as 

the Wasserstein distance between the original and the 

approximated distributions. Another class of tree 

generation methods is represented by hybrid techniques 

where two or more of the four approaches are combined 

in order to take advantage of the specific features of each 

method. Examples are tree generation algorithms that 

combine the Monte Carlo-based, the sequential cluster 

and the moment matching methods [1, 47]. Since the 

computational effort of solving the MSP problem grows 

exponentially with the number of nodes in the scenario 

tree there is a trade-off between the risky parameters 

distribution approximation and the real problem-

solving capacity. This rise the issue of the extent to 

which the approximation error in the event tree will 

bias the optimal solutions of the model [12, 27, 28, 37]. 

A related issue for financial problems solved by 

MSP is the presence of arbitrage opportunities in the 

returns scenario tree. An arbitrage is the opportunity to 

have a riskless investment with a positive return. The 

presence of an arbitrage strategy along the tree will be 

then exploited by the optimiser and the objective value 

of the financial planning model will increase without 

additional risk. In the general formulation of financial 
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MSP models the presence of arbitrages will lead to 

unbounded solutions. When instead the short selling in 

each asset is limited, optimal solutions are obtained but 

they are biased. Klaassen [31, 32] was the first to show 

how arbitrage opportunities can bias the optimal 

solution of a bond selection investment problem with 

liability. The arbitrage opportunities issue related to the 

generation of a scenario tree for asset returns has been 

then considered by other authors. Geyer, Hanke, and 

Weissensteiner [19, 20] investigate the theoretical 

relationships between the mean vector and the 

covariance matrix specifications of the statistical model 

for asset returns and the existence of arbitrage 

opportunities. Consiglio, Carollo and Zenios [9] and 

Staino and Russo [43] proposed two similar moment 

matching tree generation approaches which directly 

consider the problem of avoiding arbitrage 

opportunities. 

This paper presents an example of MSP model 

formulation for an optimal ALM problem for a Defined 

Benefit (DB) pension plan. Pension plans with defined 

benefits are determined by formulas taking into 

account number of years of contributions and the level 

of earnings for some part of the working career. The 

amount of contributions deposited by the employee 

during its active life is generally used only as a 

condition for benefits. In a typical DB plan a minimum 

number of contribution years is required to get the life 

annuity, which is usually a percentage of the last pre-

retirement nominal earnings. Sometime the fixed 

guaranteed monthly benefits are indexed to inflation. 

The pension fund pays the annuities already matured 

with the contributions of the actives members, plus the 

eventually investment returns. The total amount of 

contributions, plus the investment returns, must be 

adequate to cover benefit costs. If contributions from 

employees and employers, plus the investment returns 

are not adequate to cover the additional benefits earned 

each year, the unfunded benefit obligation increases, 

and the funded status of the plan deteriorates. The 

MSP model provides the optimal investment policy in 

order to maximise the final portfolio value and at the 

same time minimise the risk of losses with respect a 

final portfolio target. 

 

 

 

2. Multistage Stochastic Programming 

Model 

In MSP we define the future uncertainty as an 𝑅𝑑-

valued stochastic process 𝜉 = {𝜉𝑡}𝑡=0
𝑇  defined on a 

probability space {Ω, ℱ, ℱ𝑡}𝑡=0
𝑇 . The atoms of Ω are 

sequences of real-valued vectors at discrete time 

periods 𝑡 ∈  𝕋, with 𝕋 =  {0, 1, … , 𝑇 }. We define 

{𝒩𝑡}𝑡=0
𝑇  as a sequence of partitions of Ω such that 

𝒩0 = Ω, 𝒩𝑇 = {{𝜔1}, . . . , {𝜔𝑇}}and where each 

element 𝑛 ∈ 𝒩𝑇 is equal to the union of some 

elements in 𝒩𝑡+1 for every 𝑡 < 𝑇. This succession of 

partitions of Ω defines uniquely the information 

structure of the probability space and each σ-algebras 

ℱ𝑡 is generated by the partition 𝒩𝑇 and the usual 

properties on the filtration hold ℱ =  {𝜑, Ω}, ℱ𝑡   ⊂

 ℱ𝑡, ∀𝑡 ∈  𝑇. At the first time 𝑡 =  0 every state 𝜔 ∈

 Ω is possible whereas at the final time period 𝑡 = 𝑇 

we know exactly which 𝜔 ∈  Ω is the real state of the 

world. At each intermediate stage 0 <  𝑡 <  𝑇 the 

investors know that for some subset 𝐴𝑡 of 𝒩𝑡 the true 

state is some Ω ∈ 𝐴𝑡, but they are not sure which one 

it is. The probability space can be viewed as a non-

recombinant scenario tree and the elements 𝑛 of each 

partition 𝒩𝑡 are called nodes. Every node 𝑛 ∈ 𝒩𝑡 for 

𝑡 =  0, . . . , 𝑇 has a unique parent denoted 𝑎 (𝑛) ∈

𝒩𝑡+1 and every node 𝑛 ∈ 𝒩𝑡for 𝑡 =  0, . . . , 𝑇 − 1 has 

a non-empty set of child nodes 𝒞(𝑛) ⊂ 𝒩𝑡+1. The 

probability distribution ℙ is such that ∑ 𝑝𝑡𝑛 ∈𝒩𝑇
= 1 

for the terminal stage and 𝑝𝑛 = ∑ 𝑝𝑚𝑛 ∈ 𝒞(𝑛)
∀𝑛 ∈  𝑁𝑡, 

𝑡 =  𝑇 −  1, . . . , 0. The conditional probability that the 

node 𝑚 occurs, given that the parent value is 𝑛 =

 𝑎 (𝑚) has occurred, is defined by 𝑝𝑚|𝑛 =
𝑝𝑚

𝑝𝑛
, with 

𝑚 ∈  𝒞(𝑛). We call the sub-tree associated to the 

node 𝑛 at the stage 𝑡 the one-period tree composed by 

the node 𝑛 and by its child nodes 𝒞(𝑛). 

In what follows the asset universe for the pension 

fund problem is assumed to include a cash account and 

a set of 𝐼 liquid securities (fixed income securities, 

equity investments including emerging markets and 

money market) that can be traded at each decision date 

𝑡 =  0, . . . , 𝑇. We denote by 𝑟0 = {𝑟0,𝑡}𝑡=0
𝑇  the 

stochastic process describing the dynamic of the 

interest rate on the cash account and by 𝑟 = {𝑟 𝑡}𝑡=0
𝑇 a 

I-dimensional stochastic process, where each 

component {𝑟𝑖,𝑡}𝑡=0
𝑇 , 𝑖 =  1, … , 𝐼, represents the total 

return process of the 𝑖-th security over 𝑡 − 1 and 𝑡. 

We also assume that in each time period 𝑡 the pension 
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fund has to pay a net amount of cash determined as the 

difference between pensions (outflows) and 

contributions (inflows) and which is assumed driven 

by two uncertain factors: the inflation and the 

mortality risks. We represent this uncertain stream of 

payments by the stochastic process 𝑙 = { 𝑙 𝑡}𝑡=0
𝑇  (𝑙 has 

positive value but is a net expenditure for the pension 

fund). The net pension payment process 𝑙 is obtained 

from a population model (representing the pension 

fund members dynamic) driven by a stochastic 

mortality rate 𝜇 = {𝜇 𝑡}𝑡=0
𝑇 and a from a salary model 

driven by a stochastic inflation process 𝜋 = {𝜋 𝑡}𝑡=0
𝑇  

and does not depend on the realization of the 

multivariate asset process. We define 𝑁𝑓,𝛼,𝑡 and 𝑁𝑚,𝛼,𝑡 

as the total female (𝑓) and male (𝑚) members aged 𝛼 

respectively at 𝑡. We consider two age sets 𝒜 =

 20, . . . , 65 and 𝒫 =  66, . . . , 100 which represent 

respectively the working ages (active) and the ages 

after retirement (pension), where we have assumed 

that the retirement age is 66 for both male and female 

members. At the starting point 𝑡 =  1 we know 

exactly 𝑁𝑠,𝛼,𝑡, for 𝑠 =  𝑚, 𝑓 and ∀ 𝛼 ∈  𝒜 ∪  𝒫. The 

future population dynamics is modelled by means of a 

stochastic mortality rate 𝜇 𝛼,𝑡 which states the 

percentage of deaths between time 𝑡 −  1 and 𝑡 in a 

population with age 𝛼. Under these assumptions we 

can draw the population evolution for 𝑡 =  1, . . . , 𝑇 −

 1 as: 

(1) 

𝑁𝑠,𝛼+1,𝑡+1  = (1 – 𝜇 𝑠,𝛼,𝑡) ·  𝑁𝑠,𝛼,𝑡 , 𝛼 ∈ 𝒜 ∪  𝒫,

𝑠 = {𝑚, 𝑓 }. 

 

Once we have specified the population evolution 

we have to model the salary 𝑤 dynamics for each 

member, so that we can then derive the processes 

describing contribution and pension flows. The salary 

evolution for each individual depends on the age and 

on the inflation rate: the age-related increase is 

deterministic and based on a fixed yearly proportion 

increment 𝜏, whereas the inflation related increase is 

derived according to the stochastic inflation process 𝜋. 

The salary dynamic, for 𝑡 = 1, … , 𝑇 −  1, can be then 

stated as follows: 

(2) 

𝜔𝑠,𝛼+1,𝑡+1  =  𝜔 𝑠,𝛼,𝑡 · ( 1 +  𝜏),

𝛼 ∈  20, … , 64, 𝑠 =  {𝑚, 𝑓 }. 
 

 

The individual contribution 𝑐𝑠,𝛼,𝑡 of an individual 

of sex 𝑠 ∈ 𝑚, 𝑓, aged 𝛼 at time 𝑡, for 𝑡 = 1, . . . , 𝑇, is 

then obtained as the fraction 𝑟𝑐 (contribution rate) of 

the salary at time 𝑡, for 𝑡 = 1, . . . , 𝑇: 

(3) 

𝑐𝑠,𝛼+1,𝑡+1  =  𝑟𝑐 · 𝑐 𝑠,𝛼,𝑡 ,

𝛼 ∈  20, … , 65, 𝑠 =  {𝑚, 𝑓 } 

 

The individual pension 𝑃𝑠,𝛼,𝑡 of an individual of sex 

𝑠aged 𝛼 at time 𝑡, for 𝑡 = 1, . . . , 𝑇, are instead computed 

as the fraction 𝑟𝑝 (pension rate) of the last salary plus an 

inflation adjustment: 

(4) 

Ps,α,t  =  rp · ω s,α−1,t−1, α ∈  66, s =  {m, f } 

 

(5) 

Ps,α,t  =  rp · P s,α−1,t−1, α ∈  67, … ,100,  s =  {m, f } 

 

Finally, we can compute the total amount of net 

pension payments 𝑙𝑡 at time 𝑡 just by aggregating the 

total contributions 𝐶𝑡 and total pensions 𝑃𝑡  according to 

the number of active and passive members of both sexes 

at time 𝑡: 

(6) 

𝐶𝑡 = ∑ ∑ [𝑐 𝑠,𝛼,𝑡 · 𝑁𝑠,𝛼,𝑡]𝑠∈𝛼∈           

 

(7) 

𝑃𝑡 = ∑ ∑ [𝑐 𝑠,𝛼,𝑡 · 𝑁𝑠,𝛼,𝑡]𝑠∈𝛼∈   𝑡 =  1, . . . , 𝑇                       

 

(8) 

𝑙𝑡 = 𝑃𝑡  − 𝐶𝑡           𝑡 =  1, . . . , 𝑇 
 

These I +2 stochastic processes are the elements of 

the coefficient vector process {𝜉𝑡}𝑡=0
𝑇−1, i.e.,                  

𝜉𝑡 =  [𝑟0,𝑡 , 𝑟1,𝑡 , 𝑟2,𝑡 , . . . , 𝑟𝐼,𝑡 , 𝑙𝑡], 𝑡 =  0, . . . , 𝑇. We 

suppose that the pension fund starts at 𝑡 =  0 with an 

initial cash amount �̅�𝑖,0 invested in the 𝑖-th asset, for  𝑖  =

 1, . . . , 𝐼, and an initial cash surplus of �̅�0,0.  The decision 

process is then defined by a sequence of trading 

(rebalancing) decisions represented by buying 𝑥𝑖,𝑡
+ , selling 

𝑥𝑖,𝑡
− , 𝑖-th asset at times 𝑡, for 𝑖 =  1, . . . , 𝐼, which in turn 

will determine the amounts 𝑥𝑖,0, of 𝑖 = 0, . . . , 𝐼, held in 

each asset after the decisions at time t has been made: 

 

(9) 

𝑥𝑖,0(𝜉1) = �̅�𝑖,0 + 𝑥𝑖,0
+ (𝜉1) − 𝑥𝑖,0

− (𝜉1),  𝑡 = 0 
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And 

(10) 

𝑥𝑖,𝑡(𝜉𝑡) = [1 + 𝑟𝑖,𝑡] · 𝑥𝑖,𝑡−1(𝜉𝑡−1) + 𝑥𝑖,𝑡
+ (𝜉𝑡) − 𝑥𝑖,𝑡

− (𝜉𝑡).    

𝑡 =  1, . . . , 𝑇 
 

The rebalancing decisions and the net pension 

payments affect the amount of cash in the bank account, 

where we have assumed to have just received the 

contributions and payed the pensions at the starting time 

𝑡. We also suppose fixed transaction costs for 𝜂+ and 

𝜂−buying and selling one unit of the 𝑖-th asset 

respectively. The cash balance evolution is described as 

follows. At 𝑡 =  1: 

(11) 

At 𝑡 =  1: 

𝑥0,0(𝜉1) = �̅�0,0 + ∑ (1 − 𝜂−) · 𝑥𝑖,0
− (𝜉1)𝐼

𝑖=1 −

∑ (1 + 𝜂+) · 𝑥𝑖,0
+ (𝜉1),𝐼

𝑖=1            𝑡 = 0    

 

(12) 

And for 𝑡 > 0: 

𝑥0,𝑡(𝜉𝑡) = [1 + 𝑟0,𝑡] · 𝑥0,𝑡−1(𝜉𝑡−1) + ∑ (1 − 𝜂−) ·𝐼
𝑖=1

𝑥𝑖,𝑡
− (𝜉𝑡) − ∑ (1 + 𝜂+) · 𝑥𝑖,𝑡

+ (𝜉𝑡),𝐼
𝑖=1        𝑡 =  1, . . . , 𝑇                    

 

The portfolio value 𝑋𝑡 after rebalancing at time 𝑡 is 

then 𝑋𝑡 = ∑ 𝑥𝑖,𝑡
𝐼
𝑖=0 . We introduce the following risk 

measure on the final portfolio value 𝑋𝑇: 

(13) 

 𝜌 (𝑋𝑇) = 

 𝛽𝐸𝑝  [−𝑋𝑇  ] + (1 − 𝛽) 𝐸𝑃  [𝑚𝑎𝑥 (0, 𝐺𝑇 − 𝑋𝑇  ) |𝐹𝑡]  

 

which is defined as a convex combination between 

the negative of the final port- folio value at T and the 

negative deviation of the final portfolio value with 

respect a pre-specified target 𝐺𝑇. The parameter 𝛽 

controls the optimiser risk attitude: when 𝛽 is set equal 

to zero negative portfolio value positions are ruled out 

and we fall in the super hedging case. As we increase 

the risk parameter toward the unity value more risk the 

optimiser is willing to take in exchange of a higher 

expected final return. The DB pension fund manager 

seeks an optimal investment policy among a defined 

set of asset classes such that the risk measure 𝜌(𝑋𝑇 ) 

is minimised. 

In a discrete model with a finite number of stages 

and a discrete partition, where the uncertain 

parameters are described by a non-recombinant 

scenario tree, the MSP problem is usually solved by 

means of its equivalent deterministic representation 

form. We define as 𝒩 the set of all nodes at every 

stage 𝑡, ∀ 𝑡 ∈  𝕋, and with 𝑥𝑛 = [𝑥0,𝑛, 𝑥1,𝑛, … , 𝑥𝐼,𝑛], 

𝑥𝑛
+ = [𝑥1,𝑛

+ , … , 𝑥1,𝑛
+ ], 𝑥𝑛

− = [𝑥1,𝑛
− , … , 𝑥1,𝑛

− ], the vectors 

containing the decisions for all the assets at a given 

node 𝑛. The liability pricing problem can be 

formulated as follow:  

(14) 

ALM Problem 

𝑚𝑖𝑛𝑥𝑛,𝑥𝑛
+,𝑥𝑛

−; ∀ 𝑛 ∈ 𝒩  ∑ 𝑝𝑛(−𝛽𝑋𝑛)

𝑛 ∈ 𝒩𝑇

+ (1 − 𝛽)[𝐺𝑇 − 𝑋𝑛]+ 

𝑠. 𝑡.: 
(15) 

𝑥𝑖,0 = �̅�𝑖,0 + 𝑥𝑖,0
+ − 𝑥𝑖,0

−  𝑖 = 1, … , 𝐼,  

 
(16) 

𝑥0,0 = �̅�0,0 + ∑ (1 − 𝜂−) · 𝑥𝑖,0
−𝐼

𝑖=1 − ∑ (1 + 𝜂+) · 𝑥𝑖,0
+ ,𝐼

𝑖=1   

 

(17) 

𝑥𝑖,𝑛 = [1 + 𝑟𝑖,𝑛] · 𝑥𝑖,𝑎(𝑛) + 𝑥𝑖,𝑛
+ − 𝑥𝑖,𝑛

−  𝑖 = 1, … , 𝐼, 

𝑛 ∈ 𝒩𝑇 , 𝑡 ≥ 1  
 

(18) 

𝑥0,𝑛 = [1 + 𝑟0,𝑡] · 𝑥0,𝑎(𝑛) + ∑ (1 − 𝜂−) · 𝑥𝑖,𝑛
−𝐼

𝑖=1 −

∑ (1 + 𝜂+) · 𝑥𝑖,𝑛
+ − 𝑙𝑛 ,𝐼

𝑖=1  𝑛 ∈ 𝒩𝑇 , 𝑡 ≥ 1  

 
(19) 

𝑋𝑛 = ∑ 𝑥𝑖,𝑛
𝐼
𝑖=0  𝑛 ∈ 𝒩𝑇 , 𝑡 ≥ 1  

 
(20) 

𝑥𝑖,𝑛
+ ≥ 0, 𝑥𝑖,𝑛

− ≥ 0 𝑖 = 1, … , 𝐼, 𝑛 ∈ 𝒩𝑇 , 𝑡 ≥ 1  

 

(21) 

𝑥𝑖,𝑛 ≥ 0 𝑖 = 1, … , 𝐼, 𝑛 ∈ 𝒩𝑇, 𝑡 ≥ 1  

 

A deterministic equivalent representation is 

possible because we have completely described the 

future uncertainty with a finite set of possible 

realisations by means of the scenario tree process 

{𝜉𝑡}𝑡=0
𝑇  with 𝜉𝑡 = [𝑟𝑡, 𝑙𝑡]. A crucial issue for a 

successful implementation of multistage stochastic 

programming models is the specification of the mass 

points 𝑟𝑛 and 𝑙𝑛 for 𝑛 ∈  𝒩𝑡 and 𝑡 = 0, … , 𝑇. 

As a first step, an econometric model for 

economic, actuarial and financial variables must be 

designed and calibrated. This procedure can be quite 

complicated, because many risky factors affect the 

evolution of assets and liabilities of a large pension 
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fund scheme. The econometric model can be defined 

both in discrete and in continuous time. The second 

step is to find an efficient technique to specify the 

scenario tree {𝜉𝑡}𝑡=0
𝑇  which represent the possible 

evolution of the estimated econometric model, and 

which will be used as an input in the equivalent 

deterministic representation problem. The greater the 

number of nodes in the scenario tree, the more 

accurate is the approximation. However, increasing the 

number of nodes also increases the computational 

effort to solve the problem. This consideration implies 

that we face a trade-off between the accuracy of the 

risk representation and the practical problem 

solvability. An important question is the extent to 

which the approximation error in the event tree will 

bias the optimal solutions of the model. Different 

approaches to generate scenario trees for have been 

proposed, see [12] and the references therein for a 

quite recent critical overview.  

 

3. Case Study 
In this section we perform the optimal portfolio 

allocation on a simple case study based on a DB 

pension fund problem. We consider an investment 

period of seven years 𝑇 = 7 on an asset universe 

composed by seven risky and liquid securities plus a 

cash account. The seven securities considered are: 

Barclays Euro Government All Mats. Index, FTSE 

Global Government US All Mats. Index, FTSE Euro 

Emerging Markets All Mats. Index, S&P 500 

Composite Price Index, Morgan Stanley Capital 

international EMU and the MSCI Emerging Markets 

Price Index. The portfolio rebalancing periods are 

defined by the time index set 𝑇 = {0, 1, 3, 5, 7}. The 

first task is to determine the values for the tree 

processes 𝑟𝑡and 𝑙𝑡 for 𝑖 = 0, . . . , 𝐼, which will form the 

input parameters for the ALM Problem. The topology 

of such a tree will be uniquely determined by the set 

𝑁 = {1, ℕ1, ℕ2, ℕ3, ℕ4} describing the number of 

nodes in each sub-tree at a given decision stage.  Here 

we consider the case 𝑁 =  {1, 10, 10, 10, 10}. 

In order to obtain the evolution of the short interest 

rate and the inflation rate a parsimonious vector 

autoregressive (VAR) model of order one was 

developed with four state variables in nominal values: 

the euro area output-gap, the euro area one-year 

consumer price index variations, the 12 months 

Euribor rate and the ten years euro government 

benchmark return. The former represents the risk free 

stochastic interest rate which will be used to model the 

cash account return and to discount the cash flows 

whereas the letter will be used return and to discount 

the cash flows whereas the letter will be used to model 

the salary and the pension dynamics. We use quarterly 

data over the period from 1998 to 2008 to calibrate the 

parameters and from the last quarter of 2008 to the 

first quarter of 2015 for the out-of-sample analysis. 

The pension fund population evolution is constructed 

on the basis of a stochastic mortality model [35] and it 

is used, along with the inflation rate, to define the 

actuarial pension fund variables and their dynamics. 

An extensively description of the model can be found 

in [29]. Historical asset returns from 31-January-2009 

to 31-December-2015 are obtained from the Thompson 

Data Stream database with monthly frequency and all 

quoted in euro currency. Each of the seven securities 

dynamic is modelled independently fitting a Glosten, 

Jagannathan, and Runkle (GJR) model [21] and the 

correlation among them is reconstructed by modelling 

innovations with a t-copula. 

The macroeconomics, actuarial and asset models 

are used to simulate a large scenario fan 𝜉 ̅𝑠 =

[𝜉0̅
𝑠, … , 𝜉�̅�

𝑠  ], 𝑠 =  1, . . . , 𝑆 with independent 

trajectories. The scenario tree {𝜉𝑡}𝑡=0
𝑇  will be 

constructed in a forward fashion using as inputs the 

scenario fan trajectories, 𝑠 = 1, . . . , 𝑆,  and the given 

symmetric branching structure ℕ describing the 

number of nodes in each sub-tree at each stage 𝑡. The 

branching structure is defined by the user, but it must 

be such that 𝑁𝑡 ≥  𝐼 + 1 to satisfy the necessary 

condition for the absence of arbitrages. The method 

relies on the application of the Sequential Wasserstein 

Distance Minimisation (SMWD) algorithm [12], along 

with a moment matching problem, which also 

considers a set of constraints to directly avoid arbitrage 

opportunities [9, 43], to generate each sub-tree starting 

from the root node. Since the moment matching 

problem is highly non-linear a set of transformations 

and an approximation procedure have been used in 

order to solve it more efficiently (see [29] for a 

detailed description). 

The total initial portfolio value 𝑋 ̅0 = ∑ �̅�𝑖,0
𝐼
𝑖=0  is 

set equal to 3𝑒8 euro, with an initial portfolio 

composition �̅�𝑖,0 = 𝑋 ̅0 (I + 1⁄ ) , for 𝑖 = 0, … , 𝐼. In 

order to fix a value for the initial target 𝐺𝑇 we compute 

the difference between the initial portfolio value 𝑋 ̅0 
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and the expected sum of future net payments Γ0 under 

the real-world probability measure ℙ: 

Γ0 = 𝑋 ̅0 − ∑ 𝔼[𝑙𝑡]𝑇
𝑡=0 . 

 

We suppose the pension fund manager seeks a 

minimal investment return of 3% per annum along all 

the horizon 𝑇: 

𝐺𝑡 = Γ0(1 + 0.003)𝑇 

 

The optimal solution of the ALM Problem is 

computed for different values of the risk parameter β 

from 0 to 0.5 with a step of 0.05. The models have 

been implemented on a 2,8 GHz Intel Core i7 

machine, with a RAM of 16 GB 1600 MHz DDR3, 

running OS X Yosemite as operating system. The data 

pre-processing, the econometric model and the input 

specification for the optimization problems have been 

developed using the commercial soft- ware package 

MATLAB R2014b (The MathWorks, Inc., Natick, 

Massachusetts, United States). All the optimization 

problems are instead solved using the interior-point 

solver developed in the software MOSEK 7 which has 

been directly linked to the MATLAB software through 

a MEX file. The computational time to generate a tree 

with branching structure [1 10 10 10 10], (1e4 final 

nodes) is 506,75 seconds. The ALM Problem 

optimisation instance is a linear program with 266.663 

scalar variables and 111.109 constraints solved in 

299,12 seconds. 

Figure (1) shows the portfolio composition as time 

goes by for different value of the risk parameter β. It is 

clear that as we increase the risk attitude the optimizer 

gradually shifts the asset allocation toward riskier 

securities.  

This effect can be also understood by looking at 

the final portfolio value 𝑋T distribution, which is 

stored in Figure (3): as β increases distribution left tail 

becomes fatter. The increasing risk tolerance produces 

a higher expected portfolio value and at the same time 

a higher expected semi-deviation with respect the 

target 𝐺T . This can be appreciated by looking at 

Figure (2) where expected negative deviations from 

the target (x-axis) and expected final portfolio value 

(y-axis) for all different values of β are plotted. 

 

 
Figure 1: Portfolio Composition for different values of the risk parameter β 
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Figure 2: Efficient Frontier 

 

 

 
Figure 3: Final Portfolio Value Distribution for different values of the risk parameter β 
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4. Conclusion 
In this work a simple application of MSP to an ALM 

problem faced by a DB pension Fund has been 

presented. From the problem formulation to the 

definition of an optimal dynamic strategy based on 

fixed income and equity allocations in the US and 

Europe. The key steps from identifying the financial 

and economic drivers of a pension fund management 

problem, to the definition of a statistical model of their 

evolution and their integration in a large-scale 

structured stochastic linear program, solvable relying 

on efficient linear algorithms have been considered as 

constituents of an efficient decision support tool for 

long-term asset-liability management. The practical 

adoption of those tools requires both model validation 

and accurate scenario analysis, including out-of-sample 

back testing approaches. 
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