

International Journal of Finance and Managerial Accounting, Vol.5, No.18, Summer 2020

63 With Cooperation of Islamic Azad University – UAE Branch

A Model-Driven Decision Support System for Software

Cost Estimation (Case Study: Projects in NASA60 Dataset)

Hassan Rashidi

Department of Statistics, Mathematics and Computer Sciences, Allameh Tabataba’i University

hrashi@atu.ac.ir

ABSTRACT
Estimating the costs of software development is one of the most important activities in software project

management. Inaccuracies in such estimates may cause irreparable loss. A low estimate of the cost of projects

will result in failure on delivery on time and indicates the inefficiency of the software development team. On the

other hand, high estimates of resources and costs for a project will waste opportunities for other projects. This

paper presents a methodology for estimating the costs of software development. The methodology is a model-

driven decision support system that consists of four subsystems; namely Data subsystem, Model subsystem, User

Interface subsystem, and Knowledge subsystem. The core supports of this system are based on coherent theory on

the nature of collaborative work and their mathematical models in software engineering that included in the

model subsystem. This core provides a theoretical foundation for decision optimizations on the optimal labor

allocation, the shortest duration determination, and the lowest workload effort and costs estimation. The

experimental results and evaluations on Dataset NASA60 show that the proposed system has significant

conformance with experience in practice. Based on the proposed decision support system, a wide range of

fundamental problems in software project organization and cost estimation can be solved rigorously.

Keywords:
Software Development Management, Decision Support System, Optimization

file:///D:/Flash4/Erteghah-96/97-7/98-4/Deep/hrashi@atu.ac.ir

64 / A Model-Driven Decision Support System for Software Cost Estimation (Case Study: Projects in NASA60 Dataset)

Vol.5 / No.18 / Summer 2020

1. Introduction
One of the major challenges for software

companies, nowadays, is to estimate the cost and labor

requirements for their projects. Accurate cost-

estimation of software projects optimizes the internal

and external processes, staff works, efforts, and the

overheads to be coordinated with one another. In the

management software projects, estimation must be

taken into account so that it reduces costs, timing and

possible risks to avoid project failure. The business

environment and climate for software companies are

constantly changing, and it is becoming more and

more complex. Software developing organizations in

both private and public sectors are under pressures that

force them to respond quickly to changing conditions

and to be innovative in the way they operate. Such

activities require these organizations to be agile and to

make frequent and quick strategic, tactical, and

operational decisions, some of which are very

complex. Making such decisions may require

considerable amounts of relevant data, information,

and knowledge. Processing these, in the framework of

the needed decisions, must be done quickly, frequently

in real-time, and usually requires some computerized

supports.

The main motivation, here, is to provide a

foundation for estimating software costs in terms of

labor and time required for the development. This

foundation is created in the form of a decision support

system. This system provides an essential tool for

software managers. Its essentially is due to the cost of

the software developed is already known, whereas the

costs of development of new software is always a

challenging problem and matter of judgment. The

initial estimation is an important factor for project

management because it reduces the margin of error in

estimating software cost. This is particularly true when

relatively large software components such as

subsystems are reused.

The cost of a software project is usually perceived

as a function of the symbolic size of the project in the

term of lines of code in the source. The labor and time

allocations for a given workload of a project cannot be

carried out freely, rather than be constrained by certain

laws as defined in the decision support system of

software engineering costs. The main focus of the

system is to provide a theoretical foundation for

software engineering decision optimizations in the

following processes to: (a) estimate project size; (b)

determine the ideal workload, (c) allocate optimal

labor, (d) determine the shortest duration, (e)

determine the project cost, and (f) derive the project

cost. The proposed system is abbreviated by DSSSCE

(Decision Support System for Software Cost

Estimating).

The structure of the remaining sections is as

follows: Section 2 makes a literature review over the

matter. Section 3 presents the methodology used in

this research with details. Section 4 presents the results

of implementing the methodology. Finally, Section 5

is considered for the discussions and conclusion.

2. Literature Review
Software development in both cost and labor

estimation is an indispensable component of the

software development process so that an accurate

assessment of development cost is an important

guarantee for the success project. However, there are

many insufficient in current assessment methods.

Recently, the decision support system is implemented

and used for several aspects of software management.

In this section, we review the main contribution of

incorporating decision support system into software

project management.

Donzelli applied Decision Support System (DSS)

to software engineering 8). The research proposes

exploiting the advantages of the three traditional

modeling methods (analytical models and continuous

and discrete-event simulation) by combining them into

a hybrid two-level modeling approach. As a case

study, the research used this hybrid approach to model

the NASA SEL software process. The model focuses

on the main process quality attributes (effort, delivery

time, productivity, rework percentage, and product

defect density) and numerous sub-attributes (final

product size, process staffing profile, staffing profiles

over single activities, defect patterns, and so on).

Because no single modeling approach is well suited to

representing all process aspects, hybrid simulation is

emerging as a promising approach.

Li analyzed software development cost estimation

methods 13). This research brands full use of

COCOMO2, Function Point Analysis method, and

COCOMO2 with the Fuzzy Delphi method to put

developments and applications of a decision support

system for software project cost estimation forward.

The experimental application implies that the system is

viable, the result of development cost estimation is

International Journal of Finance and Managerial Accounting / 65

Vol.5 / No.18 / Summer 2020

accurate, and can effectively support the analysis of

development cost.

Pashaei Barbin and Rashidi proposed a decision

support system using a combination of multi-layer

artificial neural network and decision tree to estimate

the cost of software projects (Pashaei Barbin, and

Rashidi, 2015). In the model included in the proposed

system, the normalizing factors are vital in evaluating

efforts and costs estimation, which is carried out using

the C4.5 decision tree. Moreover, the testing and

training factors are done by a multi-layer artificial

neural network, and the most optimal values are

allocated to them. The experimental results and

evaluations on Dataset NASA60 show that the

proposed system has less amount of the total average

relative error compared with that of COCOMO model.

Monika and Sangwan used Machine learning

techniques to accurately predict software effort

values 20). This paper presents a review of various

machine-learning techniques using in the estimation of

software project effort, namely Artificial Neural

Network, Fuzzy logic, Analogy estimation, etc.

Machine learning techniques are consistently

predicting accurate results because of its learning

natures from previously completed projects. Moreover,

this research summarizes that each technique has its

own features and behaves differently according to the

environment so no technique can be preferred over

each other.

Khan et al. (2018) used a new meta-heuristic

algorithm inspired by the strawberry plant for

optimization of COCOMO effort estimation

method 33)(Khan et al., 2018). In this research, the

NASA 93 data set is used in the experiments. The

Magnitude of Relative Error (MRE) and Mean

Magnitude of Relative Error (MMRE) is evaluated.

The experimental results of the proposed algorithm

with the COCOMO model shows a decline in MMRE

to 23.8%.

Venkataiah et al. (2019) proposed a hybrid

methodology for tuning parameters of the COCOMO

model (Venkataiah, Mohanty, and Nagaratna, 2019),

consisting of two phases. The COCOMO 81,

IBMDPS, COCOMO NASA 2 and DESHARNAIS are

used to test the performance of the proposed model.

The K-means clustering procedure is used to make

different clusters is the first phase of the hybrid

approach. In the second phase, Particle Search

Optimization (PSO) used for tunning values of

COCOMO on different clustered data. The

experimental results found that MARE and RMSE

results are outperforming compared to others.

Bajta and Idra (2019) used a design method to

organize the knowledge identified as a cost estimation

taxonomy for Global Software Development (El Bajta,

and Idri, 2019). The proposed taxonomy offers a

classification scheme for the cost estimation of

distributed projects. The cost estimation taxonomy

consists of four dimensions: cost estimation context,

estimation technique, cost estimate, and cost

estimators. Each dimension, in turn, has multiple

facets. The taxonomy could then be used as a tool for

developing a repository for cost estimation knowledge.

In 29), an improved approach was proposed to

software cost estimation using an output layer self-

connection recurrent neural networks (OLSRNN) with

kernel fuzzy c-means clustering (KFCM). The

proposed OLSRNN method follows the basics of

traditional RNN models for integrating self-

connections to the output layer; thereby, the output

temporal dependencies are better captured. In this

research, five publicly available software cost

estimation datasets are adapted to verify the efficacy of

the proposed KFCM-OLSRNN method using the

validation metrics such as MdMRE, PRED (0.25), and

MMRE. The experimental results proved the

efficiency of the proposed method.

Rivadeh and Khadivar (2019) used the system

dynamics approach and fuzzy logic for software cost

modeling (Rivadeh, and Khadivar, 2019). This

research consists of two statistical populations. The

first statistical population includes IT managers and

software development project managers. The second

population includes experts from Magfa Company.

The tool used to collect data is a questionnaire. The

data and information related to the project of

development of business intelligence software were at

Magfa Company and have been gathered from the

people involved in the project. After simulating and

testing the model, three scenarios have been defined to

reduce software development costs, which include:

increasing personnel experience and increasing the

experience of project managers, increasing the

capabilities and competencies of manpower, and

changing the lifecycle of the system from cascading to

agile methodology scenario. The findings indicate that

the company will see a further reduction in software

development costs by using the agile life cycle model.

66 / A Model-Driven Decision Support System for Software Cost Estimation (Case Study: Projects in NASA60 Dataset)

Vol.5 / No.18 / Summer 2020

Parthasarathi and Rajnish (2019) studied an

empirical high-performance interpolation model to

estimate the effort of the software

projects 31)(Parthasarathi, and Rajnish, 2019). This

model compares with the COCOMO based equations

and predicts its result analyzing individually taking

different cost factors. The equation consists of one

independent variable (KLOC) and two constants a, b

which are chosen empirically taking different NASA

projects historical data and the results viewed in this

model are compared with COCOMO model with

different scale factor values.

Naik and Nayak (2019) introduced an intellectual

model of a software cost model that is mainly targeted

to perform optimization of entire cost estimation

modeling by incorporating a predictive approach

(Naik, and Nayak, 2019). Powered by the deep

learning approach, the outcome of the proposed model

is found to be cost-effective in comparison to existing

cost estimation modeling.

Prasad et al. (2019) introduced a new software

EDC estimation process, namely Regression testing

based software EDC estimation technique (Prasad,

Sreenivas, and Veena, 2019). The experimental

analysis is carried out on two datasets namely NASA

93 and COCOMO datasets. The proposed regressing

testing model would generate various test cases by

comparing the attribute values of these datasets to

predict the quality of the software in terms of effort,

duration, and cost. Based on these test case values,

software project estimation can be done efficiently. In

this work, an adaptive firefly algorithm is utilized for

the efficient test case generation which would combine

the multiple attributes of the dataset to generation

optimal test cases with the concern of ranking. The

overall evaluation of the research is conducted on the

java simulation environment and proved that the

proposed research technique leads to ensure the

optimal outcome than the existing research techniques.

3. Methodology
The methodology used in this research is based on

decision support systems. These systems are a class of

information systems (including but not limited to

computerized systems) that support business and

organizational decision-making activities. A properly

designed DSS is an interactive computer-based system

intended to aid decision-makers to compile valuable

information from a combination of raw data, personal

knowledge, documents, or business models to identify

and solve problems. The supports given by DSS can be

separated into three distinct, interrelated categories:

Personal Support, Group Support, and Organizational

Support. The DSS components may be as: (a) Inputs:

Factors, numbers, and characteristics to analyze; (b)

User Knowledge and Expertise: Inputs requiring

manual analysis by the user; (c) Outputs: Transformed

data from which DSS "decisions" are generated; and

(d) Decisions: Results generated by the DSS based on

user criteria.

There are several ways to classify DSS

applications. Not every DSS fits neatly into one

category, but a mix of two or more architectures in

one. The taxonomy for DSS was created by Daniel

Power 7). Using the mode of assistance as the

criterion, power differentiates communication-driven

DSS, data-driven DSS, document-driven DSS,

knowledge-driven DSS, and model-driven DSS. The

AIS SIGDSS 1) classifies DSS into: (a)

Communications-driven and group DSS (GSS); (b)

Data-driven DSS; (c) Document-driven DSS; (d)

Knowledge-driven DSS, Data Mining, and

Management Expert Systems Applications; and (e)

Model-Driven DSS; and (f) Compound DSS. A

compound DSS is the most popular classification for a

DSS. It is a hybrid system that includes two or more of

the five basic structures described by Holsapple and

Whinston.

Figure 1 shows the general components and

structure of DSS 21)(Sharda, Aronson, and Turban,

2015). As we can see in the figure, there are four basic

subsystems: (a) the data management subsystem; (b)

the model management subsystem; (c) the user-

interface (dialog) subsystem and (d) the knowledge-

based management subsystem. These subsystems are

described in the following subsections.

The ‘User interface’ refers to the way a manager or

decision-maker can use the system to support his/her

decision-making needs without having to become an

expert in its technology. Figure 2 shows the

components of the User Interface Subsystem in the

DSS. In fact, inside the DSS, the flow of information

from the user to the system and from the system to the

user is handled by the User Interface Management

Subsystem (UIMS). The UIMS processes user

commands, issued in whatever action language, and

passes the responses to the data and model

International Journal of Finance and Managerial Accounting / 67

Vol.5 / No.18 / Summer 2020

management subsystems. On the contrary direction, it

presents information from those subsystems to the

user. Increasingly, the action language could be based

on Web or operating system GUI concepts. It may also

include some natural language processing capabilities.

The main inputs and outputs of the decision support

system, used for software cost estimation, are

summarized in Table 1.

Figure 1- The components and structure of each DSS component, in general

 (Sharda et al. Aronson, and Turban, 2015)

Figure 2- The components of User Interface Subsystem

Table 1- The main inputs and Output Variables of the Decision Support System

Output Results Inputs Variables

Estimate Project Size by the expert -
̅̅ ̅̅̅ The Number of Persons Required in The Project-LR

Estimate Project Size from the subsystems and components-
̅̅ ̅̅ ̅ The Time Spent in the Project-TS

The Ideal Workload- IWL The Maximum Size of the Project –Smax

Optimal Labor Allocation- LR0 The Minimum Size of the Project –Smin

Shortest Duration- TSmin The Expected Size of the Project –Sexp

Minimize Project Effort- WLMin The Number of Subsystems in the Project –n

Optimized Project Cost- CPmin The Number of Components in each Subsystem –m

68 / A Model-Driven Decision Support System for Software Cost Estimation (Case Study: Projects in NASA60 Dataset)

Vol.5 / No.18 / Summer 2020

The ‘User Interface’ (UI) connects the user to the

other subsystems. The knowledge-based subsystem, in

addition to being connected to the user via the UI, may

also connect to the DBMS to obtain the data it needs,

to external models, and an organizational knowledge

base. The UIMS processes user commands, issued in

any action language that it requires, and passes them

on to the data and model management subsystems. In

the reverse direction, it presents information from

those subsystems to the user.

The ‘Data’ refers to the information needed to

make a decision, generally stored in a database, and to

how these data are organized and managed by a

DBMS. Figure 3 shows the components of the Data

Management Subsystem in the DSS. These

components are ‘DSS database’, ‘DBMS’, ‘Data

directory’ and ‘Query facility’.

The primary functions and capabilities of DBMS

are storage, retrieval, and control. The DBMS must

manage the database to organize, extract/access,

modify, delete, and catalog data. The role of

‘Extraction’ is the process of capturing data from

multiple sources, filtering them, condensing,

summarizing, and reorganizing the data to load into a

DSS database such as a data warehouse. The function

of the query facility, in building and using DSS, is

often to access, manipulate, and query data.

The ‘Query facility’ performs several tasks. It

accepts the requests for data from other DSS

components, determines how the requests can be filled

(consulting the data directory if necessary), formulates

the detailed requests, and returns the results to the

application. The function of a ‘Data directory’ is to

provide a catalog of all data in the database. It includes

the data definitions and other information needed to

facilitate and control access to data via the DMBS.

The Internal Data Sources are categories into five

groups, related to the size of components in the

subsystems used in the organization, real data

collected from the completed projects as well as the

rate of coordination between personals employed in

the software development teams.

The knowledge subsystem can either supply the

required expertise for solving some aspects of the

problem or provide some knowledge to enhance the

operation of other DSS components. It can help in

model selection by capturing the knowledge of experts

as to the applicability of different models in various

situations, making it available to people having less

expertise in this area. It is often used to better manage

other DSS components. The components in this

subsystem may be expert knowledge, neural networks,

intelligent agents, fuzzy logic case-based reasoning,

and so on.

Figure 3- The components of the Data Subsystem (the parts below of the figure is taken from

 21))

Internal Data Sources

Minimum Size of the

Component i if it is used

in Subsystem j –Smin (i, j)

Expected Size of

Component i if it is used

in Subsystem j–Sexp (i, j)

Maximum Size of the

Component i if it is used

in Subsystem j -Smax (i, j)

Real Data Project

(AC, WL, IWL, 𝑺𝒑
̅̅ ̅,

Prd, TS, ACL)

Rate of coordination

between Personals- cr

Private Personnel

Data
External Data

Sources
Extraction

Equations

Organization
Knowledge
Base

Decision Support
Database

Corporate Data

Warehouse

Data Management

Subsystem Data Base Management

System
 Query Facility

Interface Management

Subsystem
 Retrieval
 Inquire
 Update
 Report

Generation
 Delete

Data Directory

Knowledge Based

Subsystem

Internal Data Sources
The Minimum Size of the

Component i if used in

Subsystem j –Smin (i, j)

The Expected Size of

Component i if used in

Subsystem j–Sexp (i, j)

The Maximum Size of the

Component i if used in

Subsystem j -Smax (i, j)

Real Data Project

(AC, WL, IWL, 𝑆𝑝̅̅̅, Prd,

TS, ACL)

Rate of coordination

between Personals- cr

Private Personnel

Data
External Data

Sources
Extraction

Equations

Organization
Knowledge
Base

Decision Support
Database

Corporate Data

Warehouse

Data Management

Subsystem Data Base Management

System
 Query Facility

Interface Management

Subsystem
 Retrieval
 Inquire
 Update
 Report

Generation
Delete

Data Directory

Knowledge Based

Subsystem

International Journal of Finance and Managerial Accounting / 69

Vol.5 / No.18 / Summer 2020

The Models refer to the models used to analyze the

data and to forecast the results of a decision, as well as

to the software used to manage the models in a DSS.

Figure 4 shows the components of the model

management Subsystem in the DSS. These

components are Model Base, MBMS, Modeling

language, Model directory, Model Execution,

Integration, and Command Processor.

Figure 4- The components of the Model Subsystem(the part ‘Model Base Management’ is taken from

 (Sharda, Aronson, and Turban, 2015))

The ‘Model base’ contains cost estimation models

and some optimization models. These models relate to

cost budget preparation, manpower demand, personnel

employment, and process arrangement, which are an

important preparatory work to improve the efficiency

of software development and support the software

project implementation by low price reasonably.

There are many software scale estimation methods

[(Qi, and Boehm, 2017), (Pressman, 2014),

(Sommerville, 2018)], the commonly used method is

based on mathematical method, expert experience

judgment, simulation, top-down and bottom-up

methods. These models based on mathematical

methods known as parameters or statistical models,

which are the most interesting methods in software

scale estimation. In the optimization models, some

companies are intended to identify the best decision,

given specific constraints. The majority of the cost

estimation in practical models in use is obtained by the

regression techniques.

The ‘Model base Management’ has five functions:

(a) Model creation, using some programming

languages, DSS tools and/or subroutines, and other

building blocks; (b) Generation of new routines and

reports; (c) Model updating and changing; (d) Model

data manipulation; (e) The Model execution,

integration, and command. The ‘Model directory’ is

similar to a database directory. It is a catalog of all the

models and other software in the model base. It

contains model definitions, and its main function is to

answer questions about the availability and capability

of the model.

The model building block is a repository that can

be used especially for the estimation of cost and labor

required for the project. More specifically, they are

equations that used for (a) estimate project size; (b)

determine the ideal workload, (c) allocate optimal

labor, (d) determine the shortest duration, (e)

determine the project cost, and (f) derive the project

cost.

70 / A Model-Driven Decision Support System for Software Cost Estimation (Case Study: Projects in NASA60 Dataset)

Vol.5 / No.18 / Summer 2020

The proposed methodology used in this research is a

type of Model-Driven DSS in which the model

building blocks models are core. We systematically

present the equations and calculations of the model

building block in the subsystem model (See Fig. 3).

 (a) Computing The workload: If we make a top-

down approach to compute the workload in a

project, we must determine the number of

personals required (LR) and the actual time spent

on the project (TS). These values are specified by

an expert with some consideration of overhead of

interpersonal coordination in costs. The workload

of the project is the product of LR×TS. If we want

to make the relationship between the workload WL

of the project with the ideal workload of the

project, Eq. (1) can be used [(Pressman, 2014),

(Rashidi, 2014), (Wang, 2006a)]:

(1)

 ()

 ()

[Person-Month]

Where IWL is the ideal workload without the overhead

or that of a single person project, ov is the overhead

coefficient and rc is the rate of coordination between

personals in the project.

 (b) Computing Project Size: In the top-down

approach, knowing the size of the software is the

starting point of cost estimation. The project size is

usually represented by the symbolic size STD of

software in the unit of a thousand lines of code

(kLOC). The Project size STD can be estimated by

a weighted average of its symbolic size,
̅̅ ̅̅ ̅, as

follows [(Pressman, 2014), (Rashidi, 2014)]:

̅̅ ̅̅ ̅

()

[kLOC]
(2)

where Sexp is the most likely expectation of the size of

the project, Smax and Smin are the maximum or

minimum expectation, respectively, that are obtained

as inputs from the expert. In Eq. 2, it can be seen that

the weighted average size estimation gives a higher

weight to the most likely expectation. The size of the

project determined by Eq. (2) is a reasonably accurate

technique when empirical data are available on similar

projects as references.

 (c) Computing Size by the components: Since

the empirical comparability is not always available

at the whole project level in software engineering,

a more generic approach to size estimation is to

use a bottom-up approach and the strategy of

division and conquer. Usually, we assume a

software project encompasses n subsystems, and

each subsystem consists of m components.

Therefore, the size of the project can be estimated

as a sum of the weighted average of estimated

sizes of all components,
̅̅ ̅̅ ̅ , according to Eq. (3)

[(Pressman, 2014), (Rashidi, 2014)].

̅̅ ̅̅ ̅ ∑ ∑ ̅̅̅̅

 =

∑ ∑
((,) (,) (,))

(3)

 (d) Computing Ideal Workload: Once the size of

a given project is obtained by Eq. (3), the

workload WL can be determined on the basis of

software productivity benchmarks of the industry

or a specific organization. The workload of the

software project is determined by the Eq. (4) as the

ratio of the estimated project size
̅̅ ̅̅ ̅ (i.e, the

compliance between
̅̅ ̅̅ ̅ and

̅̅ ̅̅ ̅) and the

software productivity Prd in terms of

kLOC/Person-Year.

 ̅̅ ̅̅ ̅̅

 [Person-Month] (4)

 (e) Computing Optimal Labor Allocation: The

optimal labor allocation LR0 of a software

engineering project for a given ideal workload W1

is obtained by the differentiable function dTS/dLR

based on Eq. (1) when its derivative equals to zero.

(

 (

)

 (

)

[Person]

(5-1)

International Journal of Finance and Managerial Accounting / 71

Vol.5 / No.18 / Summer 2020

So, the optimal labor allocation LR0 of a software

engineering project is determined by solving the

Eq. (5-1) (Wang, 2006a). Since the W1 is not

zero, the term cr -

 yields to the following

result that is the answer for the optimum labor

allocation.

√
 , [Person] (5-2)

 (f) Computing Shortest Duration: In the

software industry, time to market is always a

priority. Therefore, the shortest duration

optimization strategy is as practically important as

that of the cost optimization strategy. The shortest

duration TSmin of software engineering projects

under the optimum labor allocation Lo for a given

ideal workload W1 is as follows (24):

 { }

((

) [Month]

(6)

 (g) Computing Minimum Effort: The minimum

workload for a software project is Wmin = IWL.

The strategy for the optimization of a software

engineering project for the lowest effort is to set

the project at WL(TSmin, LRo). Otherwise, the

waste of effort ΔWL can be determined by Eq.(7-

1) [(Pressman, 2014), (Rashidi, 2014), (Wang,

2006a)]:

 [Person-Month]
(7-1)

where WL is the real workload due to non-optimal

work allocation. When the optimal labor allocation and

the shortest duration of the project are determined, the

optimal real effort or workload of the project is

obtained by Eq.(7-2):

[Person-Month]
(7-2)

 (h) Optimize Project Costs: Based on the

minimized project workload, the cost of the given

project can be determined. The estimated cost of a

software project CP is a product of the optimal real

workload WLmin [PM] and the average cost of

labor ACL [$/PM], as calculated by Eq. (8)

[(Pressman, 2014), (Rashidi, 2014), (Wang,

2006a)]:

[Person-Month]
(8)

It is noteworthy, the cost CP determined by Eq. (8)

covers only the operational cost in the economic term.

There are additional costs, mainly capital costs such as

office, facilities, and developing environment, in

economic analysis. A complete economic analysis of

software engineering projects may be referred to

(Wang, 2006b).

4. Results
In this section, the results of executing the

methodology in this research, are presented. The

flowchart of the implementation is illustrated in

Figure 5. The flowchart of this figure is implemented

by PlannersLab (Wagner, 2018), which is a

development tool for decision support systems.

The dashboard in the subsystem of the user

interface (see Fig. 1) is used to maintain/manipulate

temporary values in order to obtain a convergence

between the size of the project in top-down and

bottom-up approaches, i.e. the values obtained from

Eq. (1) and Eq. (2).

Once the size of a given project is obtained, the

workload WL can be accurately determined on the

basis of software productivity benchmarks of the

whole industry or the historical data of a specific

organization. Based on this, decision optimization for

optimal labor allocation can be carried out. The

strategy for optimizing a project for the shortest

duration is to set the project at WL(TRmin, LRO), where

LRo is the optimal labor allocation for a given project,

and TRmin is the corresponding shortest duration of the

project with LRo.

72 / A Model-Driven Decision Support System for Software Cost Estimation (Case Study: Projects in NASA60 Dataset)

Vol.5 / No.18 / Summer 2020

Fig. 5: Flowchart of the evaluation the building block of the model subsystem

We investigated the proposed system on NASA60

dataset in which there are 60 projects (Menzies et al.,

2005). In this dataset, for each project, thousands of

line code (KLOC), Actual Efforts (ACT_EFFORT)

and several features are given. Moreover, Table 2

shows the attributes of the project in this dataset. The

columns 1-3 of the table show a description of the

feature, the abbreviation used, and possible values,

respectively, in the dataset. The value of each feature

in every project is given in the dataset.

Table 3 shows an evaluation of the equations in the

core model subsystem of the DSSSCE. The columns 1

to 3 show the data from the dataset. If we want to run

the Eq. (4) in the DSSSCE, we found a typical

benchmark of Prd is 3,000 LOC per year when

management, quality assurance, and supporting

activities are considered (See (Boehm, 1987), (Brooks,

1975), (Jones, 1981), (Jones, 1986), (Livermore,

2005), (Wang, 2006a). The columns (b) and (c) of the

table shows the result of IWL for Prd=3000 LOC/Year

by calculating Eq. (4) and DWL by calculating Eq. (7-

1). The column (d) is the difference percentage of the

columns (a) and (b).

Start

Calculate Ideal Workload Eq. (4)

Calculate Optimal Labor Eq. (5-2)

Enter Smax, Sexp, Smin, for the software Project

Calculate the Shortest Duration,

Eq. (6)

Calculate 𝑆𝑇𝐷 ̅̅ ̅̅ ̅ 𝐸𝑞 () 𝑎𝑛𝑑 𝑆𝐵𝑈 ̅̅ ̅̅ ̅̅ 𝐸𝑞 () Calculate Minimum Effort, Eq. (7-2)

Difference

between

𝑆𝑇𝐷 ̅̅ ̅̅ ̅ and 𝑆𝐵𝑈

is significant?

Enter the number of personals required (LR)

and the time spent in the project (TS), for

the software Project

Enter the number of subsystems (n) and the number of

components (m) as well as Smax(i,j), Sexp(i,j), Smin(i,j)

for each i=1..,n, and j=1…m in the Project

No
Calculate Optimal Project Cost,

Eq. (8)

Yes

End

International Journal of Finance and Managerial Accounting / 73

Vol.5 / No.18 / Summer 2020

Table 2 - The attributes of the projects used in NASA60 dataset

Feature Abbreviation Possible Values

Analysts Capability ACAP Nominal, High, Very_High

Programmers Capability PCAP Nominal, High, Very_High

Application Experience AEXP Nominal, Very_High, High

Modern Programming Practices MODP Low, Nominal, High, Very_High

Use Of Software Tools TOOL Very_Low, Low, Nominal, High, Very_High,

Virtual Machine Experience VEXP Low, Nominal, High

Language Experience LEXP Very_Low, Low, Nominal, High

Schedule Constraint SCED Low, Nominal, High

Main Memory Constraint STOR Nominal, High, Very_High, Extra_High

Data Base Size DATA Low, Nominal, High, Very_High

Time Constraint For CPU TIME Nominal, High, Very_High, Extra_High

Turnaround Time TURN Nominal, Low, High

Machine Volatility VIRT Low, Nominal, High

Process Complexity CPLX Low, Nominal, High, Very_High, Extra_High

Required Software Reliability RELY Low, High, Nominal, Very_High

Table 3 - An evaluation of the equations in the core model subsystem of the DSSSCE

Project
KLOC in

Project

(a) ACT_EFFORT in

Project

(b) IWL for Prd=3000

LOC/Year by Eq. (4)

(c) DWL by Eq.

(7-1)

(d) Difference

Percentage

[(a)-(b)]/(a) *100

1 70 278 280 -2.0 -0.72

2 227 1181 908 273.0 23.12

3 177.9 1248 711.6 536.4 42.98

4 115.8 480 463.2 16.8 3.50

5 29.5 120 118 2.0 1.67

6 19.7 60 78.8 -18.8 -31.33

7 66.6 300 266.4 33.6 11.20

8 5.5 18 22 -4.0 -22.22

9 10.4 50 41.6 8.4 16.80

10 14 60 56 4.0 6.67

11 16 114 64 50.0 43.86

12 6.5 42 26 16.0 38.10

13 13 60 52 8.0 13.33

14 8 42 32 10.0 23.81

15 90 450 360 90.0 20.00

16 15 90 60 30.0 33.33

17 38 210 152 58.0 27.62

18 10 48 40 8.0 16.67

19 161.1 815 644.4 170.6 20.93

20 48.5 239 194 45.0 18.83

21 32.6 170 130.4 39.6 23.29

22 12.8 62 51.2 10.8 17.42

23 15.4 70 61.6 8.4 12.00

24 16.3 82 65.2 16.8 20.49

25 35.5 192 142 50.0 26.04

26 25.9 117.6 103.6 14.0 11.90

27 24.6 117.6 98.4 19.2 16.33

74 / A Model-Driven Decision Support System for Software Cost Estimation (Case Study: Projects in NASA60 Dataset)

Vol.5 / No.18 / Summer 2020

Project
KLOC in

Project

(a) ACT_EFFORT in

Project

(b) IWL for Prd=3000

LOC/Year by Eq. (4)

(c) DWL by Eq.

(7-1)

(d) Difference

Percentage

[(a)-(b)]/(a) *100

28 7.7 31.2 30.8 0.4 1.28

29 9.7 25.2 38.8 -13.6 -53.97

30 2.2 8.4 8.8 -0.4 -4.76

31 3.5 10.8 14 -3.2 -29.63

32 8.2 36 32.8 3.2 8.89

33 66.6 352.8 266.4 86.4 24.49

34 150 324 600 -276.0 -85.19

35 100 360 400 -40.0 -11.11

36 100 215 400 -185.0 -86.05

37 100 360 400 -40.0 -11.11

38 15 48 60 -12.0 -25.00

39 32.5 60 130 -70.0 -116.67

40 31.5 60 126 -66.0 -110.00

41 6 24 24 0.0 0.00

42 11.3 36 45.2 -9.2 -25.56

43 20 72 80 -8.0 -11.11

44 20 48 80 -32.0 -66.67

45 7.5 72 30 42.0 58.33

46 302 2400 1208 1192.0 49.67

47 370 3240 1480 1760.0 54.32

48 219 2120 876 1244.0 58.68

49 50 370 200 170.0 45.95

50 101 750 404 346.0 46.13

51 190 420 760 -340.0 -80.95

52 47.5 252 190 62.0 24.60

53 21 107 84 23.0 21.50

54 423 2300 1692 608.0 26.43

55 79 400 316 84.0 21.00

56 284.7 973 1138.8 -165.8 -17.04

57 282.1 1368 1128.4 239.6 17.51

58 78 571.4 312 259.4 45.40

59 11.4 98.8 45.6 53.2 53.85

60 19.3 155 77.2 77.8 50.19

5. Discussion and Conclusions
In this section, the major discussions over the results

of executing the methodology and conclusion are

presented. The discussions are in the form of

following corollaries that obtained from the equations

of the model building block used in the methodology:

 Corollary-1: The results show that if some

attributes of the software project increases, they

decrease the actual and ideal efforts. These

attributes are ACAP, PCAP, AEXP, MODP,

TOOL, VEXP, and LEXP.

 Corollary-2: If some attributes of the software

project decrease, they decrease the actual and ideal

efforts. These attributes are STOR, DATA, TIME,

TURN, VIRT, CPLX and RELY.

 Corollary-3: The results show that the attribute

SCED has no significant effect on increasing or

decreasing the actual and Ideal workload.

 Corollary-4: Eq. (5-2) reveals that the optimal

labor allocation, LR0, for a given project is solely

determined by the rate of coordination r. In

software engineering projects, the coordination

rate is usually within the scope of 1% < rc < 50%.

International Journal of Finance and Managerial Accounting / 75

Vol.5 / No.18 / Summer 2020

This information helps us to obtain the scope of

the optimal labor allocation for any software

engineering project as Eq. (9) (Wang, 2006a):

 [Person] (9)

 Corollary-5: Eq. (5-1) and (5-2) reveal it is

noteworthy that the labor allocation is not directly

determined by project size. That is, it is interesting

that no matter how large a software project is, the

optimum labor allocations are mainly ranged

within one through ten persons. Any other

solutions are not an optimum labor allocation,

because they do not result in the shortest project

duration, rather than create a dramatically large

actual workload.

 Corollary-6: If we make a constraint on a group

size of the development team in collaborative work

with an upper limit of group size GSmax at 20, as

Eq. (10):

 (()) [Person] (10)

We need a coordination rate cr = 0.005.

 Corollary-7: To satisfy LR0 > 20 Person, there

must be a coordination rate cr < 0.005. Because a

coordination rate cr less than 0.5% is impossible

for many software engineering projects [(Wang,

2006a), (Wang, 2006b), (Wood, and Gray, 1991)],

therefore we don’t recommend the labor required

in the software project with more than 20.

Otherwise, software projects may not be organized

economically, efficiently, and technically sound in

any form.

 Corollary-8: Any effort to violate the constraint

specified by Eq. (10)-adding more labor into a

maximum labor allocated project- will result in an

exponentially increased actual workload, or in

other words, a project failure in usual. This may

contradict to some empirical intuitions. However,

the reality has been proven by so many failed

projects in software engineering that involve

hundreds of programmers in a single project (see

(Wang, 2006a), (Wang, 2006b), (Wood, and Gray,

1991)).

 Corollary-9: the results show that when we have a

large collaborative engineering project with the

ideal workload (IWL) to 100 Person-Month where

there is a higher coordination rate cr, we cannot

complete the project economically and feasibly in

less than TSmin = 5 Month.

 Corollary-10: The results show that setting TSmin

to 10 Month (less than one year) is usually safe for

IWL of 100 Person-Month. It is the same as

suggested in (Lunesu et al., 2018). Of course, there

are some managers who still attempt to organize

large software engineering projects that require a

shorter duration than 5 months with more than 20

persons. The only possible clue to do so is to

divide the whole system into clearly partitioned

and isolated parallel subsystems, subject to that

each of those subsystems should still obey the

constraint on group sizes in collaborative work.

 This paper presents a model-driven Decision

Support System for Software Cost Estimating

(DSSSCE). The system consists of four subsystems,

namely Data subsystem, Model subsystem, User

Interface subsystem, and Knowledge subsystem. The

core of DSSSCE supports this system is based on

coherent theory on the nature of collaborative work

and their mathematical models in software engineering

that included in the model subsystems. This core

provides a theoretical foundation for software

engineering decision optimizations on the optimal

labor allocation, the shortest duration determination,

and the lowest workload effort and costs estimation.

This paper has systematically presented a rigorous

treatment of building block in the model subsystem.

DSSSCE is adopted in analyzing the cost factors and

their relations. A set of theories in software

engineering costs estimation and optimization has been

derived that enable the formal analyses of software

engineering project organizations. The experimental

results and evaluations on Dataset NASA60 showed

that the proposed system has significant conformance

with experience in practice. The mathematical

equations in the DSSSCE indicate that the strategy for

the optimization of a software engineering project for

the lowest cost is to set the project at WL(TSmin, LRO),

where LRO is the optimal labor allocation for a given

project, and TSRmin is the corresponding shortest

duration of the project with LRO.

This research provides a mathematical foundation

for software cost estimation in the form of a Decision

Support System. The main result of the evaluation

revealed that software project cost is more directly

76 / A Model-Driven Decision Support System for Software Cost Estimation (Case Study: Projects in NASA60 Dataset)

Vol.5 / No.18 / Summer 2020

related to the expected workload of the project. Based

on the mathematical equations in the DSSSCE, a wide

range of applications in optimal software engineering

organizations can be studied. For the accountant and

financial analyst in software companies, DSSSCE

provides some attractive features for the formulation

of budgets, budgetary planning and control, and

financial analyses. The initial estimation is an

important factor for project management because it

reduces the margin of error in estimating software

cost. This is particularly true when relatively large

software components such as subsystems are reused.

References
1) AIS Special Interest Groups (2018), Association

For Information Systems, https://aisnet.org/, Last

Date Visit: 3 Oct 2018

2) Alter, S.L. Decision Support Systems: Current

Practice and Continuing Challenge. Reading, MA:

Addison-Wesley, 1980.

3) Bhandari S. (2016), FCM based conceptual

framework for software effort estimation, 3rd IEEE

International Conference on Computing for

Sustainable Global Development (INDIACom),

pp. 2584-2588.

4) Boehm B.W. (1987), Improving Software

Productivity, IEEE Computer, Vol. 20, No. 9,

pp.43.

5) Brooks F.P. Jr. (1975), The Mythical Man-Month.

Essays on Software Engineering, Addison Wesley

Longman, Inc., Boston.

6) Burstein F.; Holsapple C. W., Handbook on

Decision Support Systems, Berlin: Springer

Verlag, 2008

7) Daniel J. Power, Decision Support Systems:

Concepts and Resources for Managers, Greenwood

Publishing Group, 2002

8) Donzelli, P. (2006), A Decision Support System

for Software Project Management. IEEE Software,

Vol. 23(4): p. 67-75.

9) Holsapple, C.W., and A. B. Whinston (1996),

Decision Support Systems: A Knowledge-Based

Approach, West Publishing.

10) Jones C. (1981), Programming Productivity –

Issues for the Eighties, IEEE Press, Silver Spring,

MD.

11) Jones C. (1986), Programming Productivity,

McGraw-Hill Book Co., NY.

12) Kan Qi ; Barry W. Boehm (2017), A light-weight

incremental effort estimation model for use case

driven projects, 28th IEEE Annual Software

Technology Conference (STC), pp. 1-8.

13) Li Jun L., Jianming L., Yongqin1 J., Qingzhang C.

(2008), Development of the Decision Support

System for Software Project Cost Estimation, 2008

International Symposium on Information Science

and Engineering.

14) Livermore J. (2005), Measuring Programmer

Productivity, http://home.sprynet.com/-jgarriso/

15) Lunesu M.L., Münchb J., Marchesic M.,

Kuhrmann M. (2018), Using simulation for

understanding and reproducing distributed

software development processes in the cloud,

Information and Software Technology, Vol.

103, PP. 226-238

16) Menzies. T, Port. D, Chen. Zh, Hihn. J. (2005),

Validation Methods for Calibrating Software

Effort Models, ICSE ACM.

17) Pashaei Barbin J., Rashidi H. (2015), A Decision

Support System for Estimating Cost of Software

Projects Using A Hybrid Of Multi-Layer Artificial

Neural Network and Decision Tree, International

Journal In Foundations Of Computer Science &

Technology Vol.5 (6), PP 23-31.

18) Pressman R. S. (2014), Software Engineering: A

Practitioner's Approach, 8th Edition, McGraw-

Hill.

19) Rashidi H. (2014), Software Engineering-A

programming approach,” 2nd edition., Allameh

Tabataba’i University Press (in Persian), Iran.

20) Sangwan, Om Prakash (2017). Software effort

estimation using machine learning techniques,

Cloud Computing, Data Science & Engineering-

Confluence, 2017 7th International Conference on.

IEEE.

21) Sharda R ., Aronson J., Turban E. (2015), Business

Intelligence and Analytics: Systems for Decision

Support, 10th Edition, Pearson Prentice Hall.

22) Sommerville Y. (2018), Software Engineering,

10th Edition, Pearson Education.

23) Wagner J., Planners Lab Software, TeraData

University Network, http://plannerslab.com/, Last

Date Visit: 3 Oct 2018

24) Wang Y. (2006a), A Mathematical Model for

Explaining the Mythic Man-Month, Proceedings

of the 19th IEEE Canadian Conference on

https://aisnet.org/
https://www.sciencedirect.com/science/journal/09505849/103/supp/C
https://www.sciencedirect.com/science/journal/09505849/103/supp/C
http://plannerslab.com/

International Journal of Finance and Managerial Accounting / 77

Vol.5 / No.18 / Summer 2020

Electrical and Computer Engineering (CCECE'06),

Ottawa, Canada, May.

25) Wang Y. (2006b), Software Engineering

Foundations. A Transdisciplinary and Rigorous

Perspective, CRC Software Engineering Series,

Vol.2, CRC Press, USA.

26) Wood D. J. and B. Gray (1991), Towards a

Comprehensive Theory of Collaboration, Journal

of Applied Behavioral Science, 27(2), 139-162.

27) Venkataiah, V., Mohanty, R., Nagaratna, M.

(2019), Application of Hybrid Techniques to

Forecasting Accurate Software Cost Estimation,

International Journal of Recent Technology and

Engineering 7(6), pp. 408-412.

28) El Bajta, M., Idri, A. (2019), A Software Cost

Estimation Taxonomy for Global Software

Development Projects, ICSOFT 2019 -

Proceedings of the 14th International Conference

on Software Technologies, pp. 218-225.

29) Resmi, V., Vijayalakshmi, S. (2019), Kernel Fuzzy

Clustering With Output Layer Self-Connection

Recurrent Neural Networks for Software Cost

Estimation, Journal of Circuits, Systems and

Computers, Article in press.

30) Rivadeh, M., Khadivar, A. (2019), A model for

software development cost Estimation with System

Dynamic Approach, Iranian Journal of Information

Processing Management 34(3), pp. 1343-1370.

31) Parthasarathi Patra, H., Rajnish, K. (2019), A New

High-Performance Empirical Model for Software

Cost Estimation, International Journal of

Computer-Aided Engineering and Technology

11(4-5), pp. 601-612.

32) Naik, P., Nayak, S. (2019), Intelligence-Software

Cost Estimation Model for Optimizing Project

Management, Advances in Intelligent Systems and

Computing 984, pp. 433-443.

33) Khan, M.S., Ul Hassan, C.A., Shah, M.A.,

Shamim (2018), A., Software Cost and Effort

Estimation Using a New Optimization Algorithm

Inspired by Strawberry Plant, ICAC 2018 - 2018

24th IEEE International Conference on

Automation and Computing: Improving

Productivity through Automation and Computing,

8749003.

34) Prasad, B.M.G., Sreenivas, P.V.S., Veena, C.,

Software Project Effort Duration and Cost

Estimation Using Regression Testing and Adaptive

Firefly Algorithm (AFA) (2019), International

Journal of Engineering and Advanced Technology

8(2), pp. 104-111

