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ABSTRACT 
Estimating the costs of software development is one of the most important activities in software project 

management. Inaccuracies in such estimates may cause irreparable loss. A low estimate of the cost of projects 

will result in failure on delivery on time and indicates the inefficiency of the software development team. On the 

other hand, high estimates of resources and costs for a project will waste opportunities for other projects. This 

paper presents a methodology for estimating the costs of software development. The methodology is a model-

driven decision support system that consists of four subsystems; namely Data subsystem, Model subsystem, User 

Interface subsystem, and Knowledge subsystem. The core supports of this system are based on coherent theory on 

the nature of collaborative work and their mathematical models in software engineering that included in the 

model subsystem. This core provides a theoretical foundation for decision optimizations on the optimal labor 

allocation, the shortest duration determination, and the lowest workload effort and costs estimation. The 

experimental results and evaluations on Dataset NASA60 show that the proposed system has significant 

conformance with experience in practice. Based on the proposed decision support system, a wide range of 

fundamental problems in software project organization and cost estimation can be solved rigorously. 
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1. Introduction 
One of the major challenges for software 

companies, nowadays, is to estimate the cost and labor 

requirements for their projects. Accurate cost-

estimation of software projects optimizes the internal 

and external processes, staff works, efforts, and the 

overheads to be coordinated with one another. In the 

management software projects, estimation must be 

taken into account so that it reduces costs, timing and 

possible risks to avoid project failure. The business 

environment and climate for software companies are 

constantly changing, and it is becoming more and 

more complex. Software developing organizations in 

both private and public sectors are under pressures that 

force them to respond quickly to changing conditions 

and to be innovative in the way they operate. Such 

activities require these organizations to be agile and to 

make frequent and quick strategic, tactical, and 

operational decisions, some of which are very 

complex. Making such decisions may require 

considerable amounts of relevant data, information, 

and knowledge. Processing these, in the framework of 

the needed decisions, must be done quickly, frequently 

in real-time, and usually requires some computerized 

supports. 

The main motivation, here, is to provide a 

foundation for estimating software costs in terms of 

labor and time required for the development. This 

foundation is created in the form of a decision support 

system. This system provides an essential tool for 

software managers. Its essentially is due to the cost of 

the software developed is already known, whereas the 

costs of development of new software is always a 

challenging problem and matter of judgment. The 

initial estimation is an important factor for project 

management because it reduces the margin of error in 

estimating software cost. This is particularly true when 

relatively large software components such as 

subsystems are reused.  

The cost of a software project is usually perceived 

as a function of the symbolic size of the project in the 

term of lines of code in the source. The labor and time 

allocations for a given workload of a project cannot be 

carried out freely, rather than be constrained by certain 

laws as defined in the decision support system of 

software engineering costs. The main focus of the 

system is to provide a theoretical foundation for 

software engineering decision optimizations in the 

following processes to: (a) estimate project size; (b) 

determine the ideal workload, (c) allocate optimal 

labor, (d) determine the shortest duration, (e) 

determine the project cost, and (f) derive the project 

cost. The proposed system is abbreviated by DSSSCE 

(Decision Support System for Software Cost 

Estimating).  

The structure of the remaining sections is as 

follows: Section 2 makes a literature review over the 

matter. Section 3 presents the methodology used in 

this research with details. Section 4 presents the results 

of implementing the methodology. Finally, Section 5 

is considered for the discussions and conclusion.  

 

2. Literature Review 
Software development in both cost and labor 

estimation is an indispensable component of the 

software development process so that an accurate 

assessment of development cost is an important 

guarantee for the success project. However, there are 

many insufficient in current assessment methods. 

Recently, the decision support system is implemented 

and used for several aspects of software management. 

In this section, we review the main contribution of 

incorporating decision support system into software 

project management. 

Donzelli applied Decision Support System (DSS) 

to software engineering 8). The research proposes 

exploiting the advantages of the three traditional 

modeling methods (analytical models and continuous 

and discrete-event simulation) by combining them into 

a hybrid two-level modeling approach. As a case 

study, the research used this hybrid approach to model 

the NASA SEL software process. The model focuses 

on the main process quality attributes (effort, delivery 

time, productivity, rework percentage, and product 

defect density) and numerous sub-attributes (final 

product size, process staffing profile, staffing profiles 

over single activities, defect patterns, and so on). 

Because no single modeling approach is well suited to 

representing all process aspects, hybrid simulation is 

emerging as a promising approach. 

Li analyzed software development cost estimation 

methods 13). This research brands full use of 

COCOMO2, Function Point Analysis method, and 

COCOMO2 with the Fuzzy Delphi method to put 

developments and applications of a decision support 

system for software project cost estimation forward. 

The experimental application implies that the system is 

viable, the result of development cost estimation is 
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accurate, and can effectively support the analysis of 

development cost. 

Pashaei Barbin and Rashidi proposed a decision 

support system using a combination of multi-layer 

artificial neural network and decision tree to estimate 

the cost of software projects (Pashaei Barbin, and 

Rashidi,  2015). In the model included in the proposed 

system, the normalizing factors are vital in evaluating 

efforts and costs estimation, which is carried out using 

the C4.5 decision tree. Moreover, the testing and 

training factors are done by a multi-layer artificial 

neural network, and the most optimal values are 

allocated to them. The experimental results and 

evaluations on Dataset NASA60 show that the 

proposed system has less amount of the total average 

relative error compared with that of COCOMO model.  

Monika and Sangwan used Machine learning 

techniques to accurately predict software effort 

values  20). This paper presents a review of various 

machine-learning techniques using in the estimation of 

software project effort, namely Artificial Neural 

Network, Fuzzy logic, Analogy estimation, etc. 

Machine learning techniques are consistently 

predicting accurate results because of its learning 

natures from previously completed projects. Moreover, 

this research summarizes that each technique has its 

own features and behaves differently according to the 

environment so no technique can be preferred over 

each other. 

Khan et al. (2018) used a new meta-heuristic 

algorithm inspired by the strawberry plant for 

optimization of COCOMO effort estimation 

method  33)(Khan et al., 2018). In this research, the 

NASA 93 data set is used in the experiments. The 

Magnitude of Relative Error (MRE) and Mean 

Magnitude of Relative Error (MMRE) is evaluated. 

The experimental results of the proposed algorithm 

with the COCOMO model shows a decline in MMRE 

to 23.8%. 

Venkataiah et al. (2019) proposed a hybrid 

methodology for tuning parameters of the COCOMO 

model (Venkataiah, Mohanty, and Nagaratna, 2019), 

consisting of two phases. The COCOMO 81, 

IBMDPS, COCOMO NASA 2 and DESHARNAIS are 

used to test the performance of the proposed model. 

The K-means clustering procedure is used to make 

different clusters is the first phase of the hybrid 

approach. In the second phase, Particle Search 

Optimization (PSO) used for tunning values of 

COCOMO on different clustered data. The 

experimental results found that MARE and RMSE 

results are outperforming compared to others.  

Bajta and Idra (2019) used a design method to 

organize the knowledge identified as a cost estimation 

taxonomy for Global Software Development (El Bajta, 

and Idri, 2019). The proposed taxonomy offers a 

classification scheme for the cost estimation of 

distributed projects. The cost estimation taxonomy 

consists of four dimensions: cost estimation context, 

estimation technique, cost estimate, and cost 

estimators. Each dimension, in turn, has multiple 

facets. The taxonomy could then be used as a tool for 

developing a repository for cost estimation knowledge. 

In  29), an improved approach was proposed to 

software cost estimation using an output layer self-

connection recurrent neural networks (OLSRNN) with 

kernel fuzzy c-means clustering (KFCM). The 

proposed OLSRNN method follows the basics of 

traditional RNN models for integrating self-

connections to the output layer; thereby, the output 

temporal dependencies are better captured. In this 

research, five publicly available software cost 

estimation datasets are adapted to verify the efficacy of 

the proposed KFCM-OLSRNN method using the 

validation metrics such as MdMRE, PRED (0.25), and 

MMRE. The experimental results proved the 

efficiency of the proposed method. 

Rivadeh and Khadivar (2019) used the system 

dynamics approach and fuzzy logic for software cost 

modeling (Rivadeh, and Khadivar, 2019). This 

research consists of two statistical populations. The 

first statistical population includes IT managers and 

software development project managers. The second 

population includes experts from Magfa Company. 

The tool used to collect data is a questionnaire. The 

data and information related to the project of 

development of business intelligence software were at 

Magfa Company and have been gathered from the 

people involved in the project. After simulating and 

testing the model, three scenarios have been defined to 

reduce software development costs, which include: 

increasing personnel experience and increasing the 

experience of project managers, increasing the 

capabilities and competencies of manpower, and 

changing the lifecycle of the system from cascading to 

agile methodology scenario. The findings indicate that 

the company will see a further reduction in software 

development costs by using the agile life cycle model.  
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Parthasarathi and Rajnish (2019) studied an 

empirical high-performance interpolation model to 

estimate the effort of the software 

projects 31)(Parthasarathi, and Rajnish, 2019). This 

model compares with the COCOMO based equations 

and predicts its result analyzing individually taking 

different cost factors. The equation consists of one 

independent variable (KLOC) and two constants a, b 

which are chosen empirically taking different NASA 

projects historical data and the results viewed in this 

model are compared with COCOMO model with 

different scale factor values. 

Naik and Nayak (2019) introduced an intellectual 

model of a software cost model that is mainly targeted 

to perform optimization of entire cost estimation 

modeling by incorporating a predictive approach 

(Naik, and Nayak, 2019). Powered by the deep 

learning approach, the outcome of the proposed model 

is found to be cost-effective in comparison to existing 

cost estimation modeling. 

Prasad et al. (2019) introduced a new software 

EDC estimation process, namely Regression testing 

based software EDC estimation technique (Prasad, 

Sreenivas, and Veena, 2019). The experimental 

analysis is carried out on two datasets namely NASA 

93 and COCOMO datasets. The proposed regressing 

testing model would generate various test cases by 

comparing the attribute values of these datasets to 

predict the quality of the software in terms of effort, 

duration, and cost. Based on these test case values, 

software project estimation can be done efficiently. In 

this work, an adaptive firefly algorithm is utilized for 

the efficient test case generation which would combine 

the multiple attributes of the dataset to generation 

optimal test cases with the concern of ranking. The 

overall evaluation of the research is conducted on the 

java simulation environment and proved that the 

proposed research technique leads to ensure the 

optimal outcome than the existing research techniques. 

 

3. Methodology 
The methodology used in this research is based on 

decision support systems. These systems are a class of 

information systems (including but not limited to 

computerized systems) that support business and 

organizational decision-making activities. A properly 

designed DSS is an interactive computer-based system 

intended to aid decision-makers to compile valuable 

information from a combination of raw data, personal 

knowledge, documents, or business models to identify 

and solve problems. The supports given by DSS can be 

separated into three distinct, interrelated categories: 

Personal Support, Group Support, and Organizational 

Support. The DSS components may be as: (a) Inputs: 

Factors, numbers, and characteristics to analyze; (b) 

User Knowledge and Expertise: Inputs requiring 

manual analysis by the user; (c) Outputs: Transformed 

data from which DSS "decisions" are generated; and 

(d) Decisions: Results generated by the DSS based on 

user criteria. 

There are several ways to classify DSS 

applications. Not every DSS fits neatly into one 

category, but a mix of two or more architectures in 

one.  The taxonomy for DSS was created by Daniel 

Power  7). Using the mode of assistance as the 

criterion, power differentiates communication-driven 

DSS, data-driven DSS, document-driven DSS, 

knowledge-driven DSS, and model-driven DSS. The 

AIS SIGDSS  1) classifies DSS into: (a) 

Communications-driven and group DSS (GSS); (b) 

Data-driven DSS; (c) Document-driven DSS; (d) 

Knowledge-driven DSS, Data Mining, and 

Management Expert Systems Applications; and (e) 

Model-Driven DSS; and (f) Compound DSS. A 

compound DSS is the most popular classification for a 

DSS. It is a hybrid system that includes two or more of 

the five basic structures described by Holsapple and 

Whinston.  

Figure 1 shows the general components and 

structure of DSS  21)(Sharda, Aronson, and Turban, 

2015). As we can see in the figure, there are four basic 

subsystems: (a) the data management subsystem; (b) 

the model management subsystem; (c) the user-

interface (dialog) subsystem and (d) the knowledge-

based management subsystem. These subsystems are 

described in the following subsections. 

The ‘User interface’ refers to the way a manager or 

decision-maker can use the system to support his/her 

decision-making needs without having to become an 

expert in its technology. Figure 2 shows the 

components of the User Interface Subsystem in the 

DSS.  In fact, inside the DSS, the flow of information 

from the user to the system and from the system to the 

user is handled by the User Interface Management 

Subsystem (UIMS). The UIMS processes user 

commands, issued in whatever action language, and 

passes the responses to the data and model 
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management subsystems. On the contrary direction, it 

presents information from those subsystems to the 

user. Increasingly, the action language could be based 

on Web or operating system GUI concepts. It may also 

include some natural language processing capabilities. 

The main inputs and outputs of the decision support 

system, used for software cost estimation, are 

summarized in Table 1. 

 

 
Figure 1- The components and structure of each DSS component, in general  

 (Sharda et al. Aronson, and Turban, 2015) 

 
Figure 2- The components of User Interface Subsystem 

 

Table 1- The main inputs and Output Variables of the Decision Support System 

Output Results Inputs Variables 

Estimate Project Size by the expert -    
̅̅ ̅̅̅ The Number of Persons Required in The Project-LR 

Estimate Project Size from the subsystems and components-    
̅̅ ̅̅ ̅ The Time Spent in the Project-TS 

The Ideal Workload- IWL The Maximum Size of the Project –Smax 

Optimal Labor Allocation- LR0 The Minimum Size of the Project –Smin 

Shortest Duration- TSmin The Expected Size of the Project –Sexp 

Minimize Project Effort- WLMin The Number of Subsystems in the Project –n 

Optimized Project Cost- CPmin The Number of Components in each Subsystem –m 
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The ‘User Interface’ (UI) connects the user to the 

other subsystems. The knowledge-based subsystem, in 

addition to being connected to the user via the UI, may 

also connect to the DBMS to obtain the data it needs, 

to external models, and an organizational knowledge 

base. The UIMS processes user commands, issued in 

any action language that it requires, and passes them 

on to the data and model management subsystems. In 

the reverse direction, it presents information from 

those subsystems to the user. 

The ‘Data’ refers to the information needed to 

make a decision, generally stored in a database, and to 

how these data are organized and managed by a 

DBMS. Figure 3 shows the components of the Data 

Management Subsystem in the DSS. These 

components are ‘DSS database’, ‘DBMS’, ‘Data 

directory’ and ‘Query facility’. 

The primary functions and capabilities of DBMS 

are storage, retrieval, and control. The DBMS must 

manage the database to organize, extract/access, 

modify, delete, and catalog data. The role of 

‘Extraction’ is the process of capturing data from 

multiple sources, filtering them, condensing, 

summarizing, and reorganizing the data to load into a 

DSS database such as a data warehouse. The function 

of the query facility, in building and using DSS, is 

often to access, manipulate, and query data. 

The ‘Query facility’ performs several tasks. It 

accepts the requests for data from other DSS 

components, determines how the requests can be filled 

(consulting the data directory if necessary), formulates 

the detailed requests, and returns the results to the 

application. The function of a ‘Data directory’ is to 

provide a catalog of all data in the database. It includes 

the data definitions and other information needed to 

facilitate and control access to data via the DMBS.  

The Internal Data Sources are categories into five 

groups, related to the size of components in the 

subsystems used in the organization, real data 

collected from the completed projects as well as the 

rate of coordination between personals employed in 

the software development teams. 

The knowledge subsystem can either supply the 

required expertise for solving some aspects of the 

problem or provide some knowledge to enhance the 

operation of other DSS components. It can help in 

model selection by capturing the knowledge of experts 

as to the applicability of different models in various 

situations, making it available to people having less 

expertise in this area. It is often used to better manage 

other DSS components. The components in this 

subsystem may be expert knowledge, neural networks, 

intelligent agents, fuzzy logic case-based reasoning, 

and so on. 

 

 
Figure 3- The components of the Data Subsystem (the parts below of the figure is taken from 

  21)) 
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The Models refer to the models used to analyze the 

data and to forecast the results of a decision, as well as 

to the software used to manage the models in a DSS. 

Figure 4 shows the components of the model 

management Subsystem in the DSS. These 

components are Model Base, MBMS, Modeling 

language, Model directory, Model Execution, 

Integration, and Command Processor. 

 

 
Figure 4- The components of the Model Subsystem( the part ‘Model Base Management’ is taken from 

 (Sharda, Aronson, and Turban, 2015)) 

 

The ‘Model base’ contains cost estimation models 

and some optimization models. These models relate to 

cost budget preparation, manpower demand, personnel 

employment, and process arrangement, which are an 

important preparatory work to improve the efficiency 

of software development and support the software 

project implementation by low price reasonably. 

There are many software scale estimation methods 

[ (Qi, and Boehm, 2017), (Pressman, 2014), 

(Sommerville, 2018)], the commonly used method is 

based on mathematical method, expert experience 

judgment, simulation, top-down and bottom-up 

methods. These models based on mathematical 

methods known as parameters or statistical models, 

which are the most interesting methods in software 

scale estimation. In the optimization models, some 

companies are intended to identify the best decision, 

given specific constraints. The majority of the cost 

estimation in practical models in use is obtained by the 

regression techniques.   

The ‘Model base Management’ has five functions: 

(a) Model creation, using some programming 

languages, DSS tools and/or subroutines, and other 

building blocks; (b) Generation of new routines and 

reports; (c) Model updating and changing; (d) Model 

data manipulation; (e) The Model execution, 

integration, and command. The ‘Model directory’ is 

similar to a database directory. It is a catalog of all the 

models and other software in the model base. It 

contains model definitions, and its main function is to 

answer questions about the availability and capability 

of the model.  

The model building block is a repository that can 

be used especially for the estimation of cost and labor 

required for the project. More specifically, they are 

equations that used for (a) estimate project size; (b) 

determine the ideal workload, (c) allocate optimal 

labor, (d) determine the shortest duration, (e) 

determine the project cost, and (f) derive the project 

cost. 
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The proposed methodology used in this research is a 

type of Model-Driven DSS in which the model 

building blocks models are core. We systematically 

present the equations and calculations of the model 

building block in the subsystem model (See Fig. 3).  

 (a) Computing The workload: If we make a top-

down approach to compute the workload in a 

project, we must determine the number of 

personals required (LR) and the actual time spent 

on the project (TS). These values are specified by 

an expert with some consideration of overhead of 

interpersonal coordination in costs. The workload 

of the project is the product of LR×TS. If we want 

to make the relationship between the workload WL 

of the project with the ideal workload of the 

project, Eq. (1) can be used [(Pressman, 2014), 

(Rashidi, 2014), (Wang, 2006a)]: 

 

(1) 

             (    )

          
   (    )

 
 

 

[Person-Month] 

 

Where IWL is the ideal workload without the overhead 

or that of a single person project, ov is the overhead 

coefficient and rc is the rate of coordination between 

personals in the project. 

 (b) Computing Project Size: In the top-down 

approach, knowing the size of the software is the 

starting point of cost estimation. The project size is 

usually represented by the symbolic size STD of 

software in the unit of a thousand lines of code 

(kLOC). The Project size STD can be estimated by 

a weighted average of its symbolic size,    
̅̅ ̅̅ ̅, as 

follows [(Pressman, 2014), (Rashidi, 2014)]: 

 

   
̅̅ ̅̅ ̅  

(                   )

 
  

[kLOC] 
(2) 

 

where Sexp is the most likely expectation of the size of 

the project, Smax and Smin are the maximum or 

minimum expectation, respectively, that are obtained 

as inputs from the expert. In Eq. 2, it can be seen that 

the weighted average size estimation gives a higher 

weight to the most likely expectation. The size of the 

project determined by Eq. (2) is a reasonably accurate 

technique when empirical data are available on similar 

projects as references.  

 (c) Computing Size by the components: Since 

the empirical comparability is not always available 

at the whole project level in software engineering, 

a more generic approach to size estimation is to 

use a bottom-up approach and the strategy of 

division and conquer. Usually, we assume a 

software project encompasses n subsystems, and 

each subsystem consists of m components. 

Therefore, the size of the project can be estimated 

as a sum of the weighted average of estimated 

sizes of all components,    
̅̅ ̅̅ ̅ , according to Eq. (3) 

[(Pressman, 2014), (Rashidi, 2014)]. 
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 (d) Computing Ideal Workload: Once the size of 

a given project is obtained by Eq. (3), the 

workload WL can be determined on the basis of 

software productivity benchmarks of the industry 

or a specific organization. The workload of the 

software project is determined by the Eq. (4) as the 

ratio of the estimated project size     
̅̅ ̅̅ ̅  (i.e, the 

compliance between     
̅̅ ̅̅ ̅ and     

̅̅ ̅̅ ̅) and the 

software productivity Prd in terms of 

kLOC/Person-Year. 

    
     ̅̅ ̅̅ ̅̅

   
  [Person-Month] (4) 

 (e) Computing Optimal Labor Allocation: The 

optimal labor allocation LR0 of a software 

engineering project for a given ideal workload W1 

is obtained by the differentiable function dTS/dLR 

based on Eq. (1) when its derivative equals to zero. 
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So, the optimal labor allocation LR0 of a software 

engineering project is determined by solving the 

Eq. (5-1) (Wang, 2006a). Since the W1 is not 

zero, the term cr -
 

   
   yields to the following 

result that is the answer for the optimum labor 

allocation. 

    
     

√  
 ,       [Person] (5-2) 

 (f) Computing Shortest Duration: In the 

software industry, time to market is always a 

priority. Therefore, the shortest duration 

optimization strategy is as practically important as 

that of the cost optimization strategy. The shortest 

duration TSmin of software engineering projects 

under the optimum labor allocation Lo for a given 

ideal workload W1 is as follows ( 24): 

      {         }  
 

 
(   (   

       
 

   
)  [Month] 

(6) 

 (g) Computing Minimum Effort: The minimum 

workload for a software project is Wmin = IWL. 

The strategy for the optimization of a software 

engineering project for the lowest effort is to set 

the project at WL(TSmin, LRo). Otherwise, the 

waste of effort ΔWL can be determined by Eq.(7-

1) [(Pressman, 2014), (Rashidi, 2014), (Wang, 

2006a)]: 

               

 [Person-Month] 
(7-1) 

where WL is the real workload due to non-optimal 

work allocation. When the optimal labor allocation and 

the shortest duration of the project are determined, the 

optimal real effort or workload of the project is 

obtained by Eq.(7-2): 

                  

[Person-Month] 
(7-2) 

 (h) Optimize Project Costs: Based on the 

minimized project workload, the cost of the given 

project can be determined.  The estimated cost of a 

software project CP is a product of the optimal real 

workload WLmin [PM] and the average cost of 

labor ACL [$/PM], as calculated by Eq. (8) 

[(Pressman, 2014), (Rashidi, 2014), (Wang, 

2006a)]: 

                            

[Person-Month] 
(8) 

It is noteworthy, the cost CP determined by Eq. (8) 

covers only the operational cost in the economic term. 

There are additional costs, mainly capital costs such as 

office, facilities, and developing environment, in 

economic analysis. A complete economic analysis of 

software engineering projects may be referred to 

(Wang, 2006b). 

 

 

4. Results  
In this section, the results of executing the 

methodology in this research, are presented. The 

flowchart of  the implementation is illustrated in 

Figure 5. The flowchart of this figure is implemented 

by PlannersLab (Wagner, 2018), which is a 

development tool for decision support systems. 

The dashboard in the subsystem of the user 

interface (see Fig. 1) is used to maintain/manipulate 

temporary values in order to obtain a convergence 

between the size of the project in top-down and 

bottom-up approaches, i.e. the values obtained from 

Eq. (1) and Eq. (2).  

Once the size of a given project is obtained, the 

workload WL can be accurately determined on the 

basis of software productivity benchmarks of the 

whole industry or the historical data of a specific 

organization. Based on this, decision optimization for 

optimal labor allocation can be carried out. The 

strategy for optimizing a project for the shortest 

duration is to set the project at WL(TRmin, LRO), where 

LRo is the optimal labor allocation for a given project, 

and TRmin is the corresponding shortest duration of the 

project with LRo.  
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Fig. 5: Flowchart of the evaluation the building block of the model subsystem 

 

 

We investigated the proposed system on NASA60 

dataset in which there are 60 projects (Menzies et al., 

2005). In this dataset, for each project, thousands of 

line code (KLOC), Actual Efforts (ACT_EFFORT) 

and several features are given. Moreover, Table 2 

shows the attributes of the project in this dataset. The 

columns 1-3 of the table show a description of the 

feature, the abbreviation used, and possible values, 

respectively, in the dataset. The value of each feature 

in every project is given in the dataset. 

Table 3 shows an evaluation of the equations in the 

core model subsystem of the DSSSCE. The columns 1 

to 3 show the data from the dataset.  If we want to run 

the Eq. (4) in the DSSSCE, we found a typical 

benchmark of Prd is 3,000 LOC per year when 

management, quality assurance, and supporting 

activities are considered (See (Boehm, 1987), (Brooks, 

1975), (Jones, 1981), (Jones, 1986), (Livermore, 

2005), (Wang, 2006a). The columns (b) and (c) of the 

table shows the result of IWL for Prd=3000 LOC/Year 

by calculating Eq. (4) and DWL by calculating Eq. (7-

1). The column (d) is the difference percentage of the 

columns (a) and (b). 
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Table 2 - The attributes of the projects used in NASA60 dataset 

Feature Abbreviation Possible Values 

Analysts Capability ACAP Nominal, High, Very_High 

Programmers Capability PCAP Nominal, High, Very_High 

Application Experience AEXP Nominal, Very_High, High 

Modern Programming Practices MODP Low, Nominal, High, Very_High 

Use Of  Software Tools TOOL Very_Low, Low, Nominal, High, Very_High, 

Virtual Machine Experience VEXP Low, Nominal, High 

Language Experience LEXP Very_Low, Low, Nominal, High 

Schedule Constraint SCED Low, Nominal, High 

Main Memory Constraint STOR Nominal, High, Very_High, Extra_High 

Data Base Size DATA Low, Nominal, High, Very_High 

Time Constraint For CPU TIME Nominal, High, Very_High, Extra_High 

Turnaround Time TURN Nominal, Low, High 

Machine Volatility VIRT Low, Nominal, High 

Process Complexity CPLX Low, Nominal, High, Very_High, Extra_High 

Required Software Reliability RELY Low, High, Nominal, Very_High 

 

 

Table 3 - An evaluation of the equations in the core model subsystem of the DSSSCE 

Project 
KLOC in 

Project 

(a) ACT_EFFORT in 

Project 

(b) IWL for Prd=3000 

LOC/Year by Eq. (4) 

(c) DWL by  Eq. 

(7-1) 

(d) Difference 

Percentage 

[(a)-(b)]/(a) *100 

1 70 278 280 -2.0 -0.72 

2 227 1181 908 273.0 23.12 

3 177.9 1248 711.6 536.4 42.98 

4 115.8 480 463.2 16.8 3.50 

5 29.5 120 118 2.0 1.67 

6 19.7 60 78.8 -18.8 -31.33 

7 66.6 300 266.4 33.6 11.20 

8 5.5 18 22 -4.0 -22.22 

9 10.4 50 41.6 8.4 16.80 

10 14 60 56 4.0 6.67 

11 16 114 64 50.0 43.86 

12 6.5 42 26 16.0 38.10 

13 13 60 52 8.0 13.33 

14 8 42 32 10.0 23.81 

15 90 450 360 90.0 20.00 

16 15 90 60 30.0 33.33 

17 38 210 152 58.0 27.62 

18 10 48 40 8.0 16.67 

19 161.1 815 644.4 170.6 20.93 

20 48.5 239 194 45.0 18.83 

21 32.6 170 130.4 39.6 23.29 

22 12.8 62 51.2 10.8 17.42 

23 15.4 70 61.6 8.4 12.00 

24 16.3 82 65.2 16.8 20.49 

25 35.5 192 142 50.0 26.04 

26 25.9 117.6 103.6 14.0 11.90 

27 24.6 117.6 98.4 19.2 16.33 
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Project 
KLOC in 

Project 

(a) ACT_EFFORT in 

Project 

(b) IWL for Prd=3000 

LOC/Year by Eq. (4) 

(c) DWL by  Eq. 

(7-1) 

(d) Difference 

Percentage 

[(a)-(b)]/(a) *100 

28 7.7 31.2 30.8 0.4 1.28 

29 9.7 25.2 38.8 -13.6 -53.97 

30 2.2 8.4 8.8 -0.4 -4.76 

31 3.5 10.8 14 -3.2 -29.63 

32 8.2 36 32.8 3.2 8.89 

33 66.6 352.8 266.4 86.4 24.49 

34 150 324 600 -276.0 -85.19 

35 100 360 400 -40.0 -11.11 

36 100 215 400 -185.0 -86.05 

37 100 360 400 -40.0 -11.11 

38 15 48 60 -12.0 -25.00 

39 32.5 60 130 -70.0 -116.67 

40 31.5 60 126 -66.0 -110.00 

41 6 24 24 0.0 0.00 

42 11.3 36 45.2 -9.2 -25.56 

43 20 72 80 -8.0 -11.11 

44 20 48 80 -32.0 -66.67 

45 7.5 72 30 42.0 58.33 

46 302 2400 1208 1192.0 49.67 

47 370 3240 1480 1760.0 54.32 

48 219 2120 876 1244.0 58.68 

49 50 370 200 170.0 45.95 

50 101 750 404 346.0 46.13 

51 190 420 760 -340.0 -80.95 

52 47.5 252 190 62.0 24.60 

53 21 107 84 23.0 21.50 

54 423 2300 1692 608.0 26.43 

55 79 400 316 84.0 21.00 

56 284.7 973 1138.8 -165.8 -17.04 

57 282.1 1368 1128.4 239.6 17.51 

58 78 571.4 312 259.4 45.40 

59 11.4 98.8 45.6 53.2 53.85 

60 19.3 155 77.2 77.8 50.19 

 

 

 

5. Discussion  and Conclusions 
In this section, the major discussions over the results 

of executing the methodology and conclusion are 

presented. The discussions are in the form of 

following corollaries that obtained from the equations 

of the model building block used in the methodology:  

 Corollary-1: The results show that if some 

attributes of the software project increases, they 

decrease the actual and ideal efforts. These 

attributes are ACAP, PCAP, AEXP, MODP, 

TOOL, VEXP, and LEXP. 

 Corollary-2: If some attributes of the software 

project decrease, they decrease the actual and ideal 

efforts. These attributes are STOR, DATA, TIME, 

TURN, VIRT, CPLX and RELY.   

 Corollary-3: The results show that the attribute 

SCED has no significant effect on increasing or 

decreasing the actual and Ideal workload.  

 Corollary-4: Eq. (5-2) reveals that the optimal 

labor allocation, LR0, for a given project is solely 

determined by the rate of coordination r. In 

software engineering projects, the coordination 

rate is usually within the scope of 1% < rc < 50%. 
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This information helps us to obtain the scope of 

the optimal labor allocation for any software 

engineering project as Eq. (9) (Wang, 2006a): 

            [Person] (9) 

 Corollary-5: Eq. (5-1) and (5-2) reveal it is 

noteworthy that the labor allocation is not directly 

determined by project size. That is, it is interesting 

that no matter how large a software project is, the 

optimum labor allocations are mainly ranged 

within one through ten persons. Any other 

solutions are not an optimum labor allocation, 

because they do not result in the shortest project 

duration, rather than create a dramatically large 

actual workload. 

 Corollary-6: If we make a constraint on a group 

size of the development team in collaborative work 

with an upper limit of group size GSmax at 20, as 

Eq. (10): 

         (   (  ))       [Person] (10) 

We need a coordination rate cr = 0.005.  

 Corollary-7: To satisfy LR0 > 20 Person, there 

must be a coordination rate cr < 0.005. Because a 

coordination rate cr less than 0.5% is impossible 

for many software engineering projects [(Wang, 

2006a), (Wang, 2006b), (Wood, and Gray, 1991)], 

therefore we don’t recommend the labor required 

in the software project with more than 20. 

Otherwise, software projects may not be organized 

economically, efficiently, and technically sound in 

any form.  

 Corollary-8: Any effort to violate the constraint 

specified by Eq. (10)-adding more labor into a 

maximum labor allocated project- will result in an 

exponentially increased actual workload, or in 

other words, a project failure in usual. This may 

contradict to some empirical intuitions. However, 

the reality has been proven by so many failed 

projects in software engineering that involve 

hundreds of programmers in a single project (see 

(Wang, 2006a), (Wang, 2006b), (Wood, and Gray, 

1991)). 

 Corollary-9: the results show that when we have a 

large collaborative engineering project with the 

ideal workload (IWL) to 100 Person-Month where 

there is a higher coordination rate cr, we cannot 

complete the project economically and feasibly in 

less than TSmin = 5 Month.  

 Corollary-10: The results show that setting TSmin 

to 10 Month (less than one year) is usually safe for 

IWL of 100 Person-Month. It is the same as 

suggested in (Lunesu et al., 2018). Of course, there 

are some managers who still attempt to organize 

large software engineering projects that require a 

shorter duration than 5 months with more than 20 

persons. The only possible clue to do so is to 

divide the whole system into clearly partitioned 

and isolated parallel subsystems, subject to that 

each of those subsystems should still obey the 

constraint on group sizes in collaborative work. 

 

 This paper presents a model-driven Decision 

Support System for Software Cost Estimating 

(DSSSCE). The system consists of four subsystems, 

namely Data subsystem, Model subsystem, User 

Interface subsystem, and Knowledge subsystem. The 

core of DSSSCE supports this system is based on 

coherent theory on the nature of collaborative work 

and their mathematical models in software engineering 

that included in the model subsystems. This core 

provides a theoretical foundation for software 

engineering decision optimizations on the optimal 

labor allocation, the shortest duration determination, 

and the lowest workload effort and costs estimation.  

This paper has systematically presented a rigorous 

treatment of building block in the model subsystem. 

DSSSCE is adopted in analyzing the cost factors and 

their relations. A set of theories in software 

engineering costs estimation and optimization has been 

derived that enable the formal analyses of software 

engineering project organizations. The experimental 

results and evaluations on Dataset NASA60 showed 

that the proposed system has significant conformance 

with experience in practice. The mathematical 

equations in the DSSSCE indicate that the strategy for 

the optimization of a software engineering project for 

the lowest cost is to set the project at WL(TSmin, LRO), 

where LRO is the optimal labor allocation for a given 

project, and TSRmin is the corresponding shortest 

duration of the project with LRO.  

This research provides a mathematical foundation 

for software cost estimation in the form of a Decision 

Support System. The main result of the evaluation 

revealed that software project cost is more directly 
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related to the expected workload of the project. Based 

on the mathematical equations in the DSSSCE, a wide 

range of applications in optimal software engineering 

organizations can be studied. For the accountant and 

financial analyst in software companies, DSSSCE 

provides some attractive features for the formulation 

of budgets, budgetary planning and control, and 

financial analyses. The initial estimation is an 

important factor for project management because it 

reduces the margin of error in estimating software 

cost. This is particularly true when relatively large 

software components such as subsystems are reused.  
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