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ABSTRACT 
The Black-Scholes model assumes that the price of the underlying asset follows a geometric Brownian 

motion. This assumption has two implications: first, log-returns over any horizon are normally distributed with 

constant volatility σ and the second, stock price evolution is continuous, therefore, there is no market gaps. These 

conditions are commonly violated in practice: empirical returns typically exhibit fatter tails than a normal 

distribution, volatility is not constant over time, and markets do sometimes gap. The existence of volatility skew 

will misprice options price. Derived from these flaws, a number of models have proposed. In this paper we will 

analyze, simulate and compare two most important models which have widespread using: jump diffusion model 

and stochastic volatility model. Each of the aforementioned models have programmed in MATLAB and Python, 

then their results have been compared together in order to provide a robust understanding of each of them. Our 

results show that in comparison to Black-Scholes model these two models yield better performance. 
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1. Introduction 
The Black- Scholes is one of the crucial models in 

financial engineering area. It was developed in 1973 

by Fischer Black, Robert Merton, and Myron 

Scholes and is still widely used. It is considered as one 

of the best ways to specify options prices. The model 

requires five input variables: time to expiration, the 

current stock price, the risk-free rate, the volatility and 

the strike price of an option (Golbabai et al. 2019; Ma 

et al. 2020). 

The model assumes stock prices follow 

a lognormal distribution because asset prices should be 

positive. Often, asset prices are observed to have 

significant right skewness and some degree of kurtosis 

(fat tails). This means high-risk downward moves 

often happen more often in the market than a normal 

distribution predicts. 

The assumption of lognormal underlying asset 

prices should thus show that implied volatilities are 

similar for each strike price according to the Black-

Scholes model. However, since the market crash of 

1987, implied volatilities for at the money options 

have been lower than those further out of the money or 

far in the money. The reason for this phenomenon is 

the market is pricing in a greater likelihood of a high 

volatility move to the downside in the markets (Tian 

and Zhang 2020). 

This has led to the presence of the volatility skew. 

When the implied volatilities for options with the 

same expiration date are mapped out on a graph, a 

smile or skew shape can be seen. Thus, the Black-

Scholes model is not efficient for calculating implied 

volatility. 

The Black-Scholes model makes certain assumptions: 

 The option is European and can only be 

exercised at expiration. 

 No dividends are paid out during the life of the 

option. 

 Markets are efficient (i.e., market movements 

cannot be predicted). 

 There are no transaction costs in buying the 

option. 

 The risk-free rate and volatility of the 

underlying are known and constant. 

 The returns on the underlying are normally 

distributed (Li et al. 2019). 

 

As it is clear, Black-Scholes model makes some 

restrictive assumptions, which are not necessarily exist 

in the real world. The variety of models have been 

offered to modify the Black–Scholes model, some of 

them are mentioned here:  

(a) chaos theory fractal Brownian motion, and 

stable processes; for example, Mandelbrot (1963), 

Rogers (1997), Samorodnitsky and Taqqu (1994); (b) 

generalized hyperbolic models, including log t model 

and log hyperbolic model; for example, Barndorff-

Nielsen and Shephard (2001), Blattberg and Gonedes 

(1974); (c) time-changed Brownian motions; for 

example, Clark (1973), Madan and Seneta (1990), 

Madan et al. (1998), and Heyde (2000). An immediate 

problem with these models is that it may be difficult to 

obtain analytical solutions for option prices.  

In a parallel development, different models are 

also proposed to incorporate the “volatility smile” in 

option pricing. Popular ones include: (a) stochastic 

volatility and ARCH models; for example, Hull and 

White (1987), Engle (1995), Fouque et al. (2000); (b) 

constant elasticity model (CEV) model; for example, 

Cox and Ross (1976), and Davydov and Linetsky 

(2001); (c) normal jump models proposed by Merton 

(1976);  

(d) affine stochastic-volatility and affine jump-

diffusion models; for example, Heston (1993), and 

Duffie et al. (2000); (e) models based on Lévy 

processes; for example, Geman et al. (2001) and 

references therein; (f) a numerical procedure called 

“implied binomial trees”; for example, Derman and 

Kani (1994) and Dupire (1994). 

The following table provides detailed explanation 

for prominent models which offered to modify Black-

Scholes model.  

Jump diffusion and stochastic volatility models 

answer to two major flaws in Black-Scholes model. 

Jump diffusion considers discontinuities in observed 

price process and stochastic volatility regards volatility 

as a mutable variable unlike Black-Scholes. The main 

contribution of this paper is its goal to explain in detail 

those two models and simulate them with different 

scenarios using Python and MATLAB to pave the way 

for scholars to make a deep comprehension about 

them. Furthermore, we compare performance of 

Black-Scholes and aforementioned models for option 

pricing. 

 

 

https://www.investopedia.com/terms/r/robert-c-merton.asp
https://www.investopedia.com/terms/m/myron-scholes.asp
https://www.investopedia.com/terms/m/myron-scholes.asp
https://www.investopedia.com/articles/investing/102014/lognormal-and-normal-distribution.asp
https://www.investopedia.com/terms/e/expiration-date.asp
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Table 1: Models proposed to modify flaws of Black-Scholes model 

Jump-Diffusion Model 

Merton for the first time generalized Black-Scholes Model 

(1976). 

Merton assumes that stock returns are composed of two parts: 

Normal Part & Extraordinary Part 

Normal part progress according to the Geometric Brownian 

Motion process 

Extraordinary Part: causes unexpected jumps in stock price. 

The probability of jumps and the distribution of the jump size 

will enter in the option pricing problem. 

Jumps are market gaps and result in fat tails in return 

distribution. 

Stochastic Volatility Models 

These models are second generalization of Black-Scholes 

Model. 

Heston published crucial and influential paper in this area 

(1993). 

Although in Black-Scholes Model the volatility is constant, in 

this model we consider it as a variable. 

Volatility is a random variable that progresses over time. 

The correlation between changes in volatility and returns enters 

as another important variable. 

Stock prices are continuous in these models. 

Stochastic volatility results in fat tails. 

AERCH/GARCH Models 

Volatility may not be separately random but may change over 

time in a manner that may be dependent on the movement of 

stock price. 

Engle (1982) developed ARCH. 

Bollerlev (1986) proposed GARCH. 

Duan (1995) developed option pricing theory for these models 

Non-Normal Models 

Among the other approaches that have been proposed to better 

fit observed option prices are those that directly posit non-

normal returns distribution. 

These include the log stable models of Carr and Wu (2003) and 

the variance gamma model of Madan, Carr and Chang (1998). 

 

2. Jump-diffusion model 
A market gap is a discontinuous price move. The 

Black-Scholes Model does not consider these 

discontinuities but empirical evidence shows markets 

do gap, especially when unexpected good or bad news 

hit the market. Robert Merton (1976) modified the 

Black-Scholes Model by adding a jump process to it. 

Jump process is a process that remains constant 

between jumps and changes at jump times. The stock 

price process in Merton’s framework consists of two 

processes.  One based on a GBM (Geometric 

Brownian Motion) process and another on a jump 

process. To specify jump diffusion model we should 

determine 1. The GBM process including its volatility 

2. Frequency of jumps 3. The distribution of jump size. 

For calculating frequency of jumps we use Poisson 

distribution. The Poisson distribution is frequently 

used to represent random arrivals. The probabilities of 

the outcomes are defined by:  

            (   )   
      

  
 

 

The mean and variance of Poisson distribution are: 

 

E(N) = ∑ [              (   ) ]    
     

Var(N) = E(  ) [ ( )]     

 

2.1. Jump diffusion returns specification 

Here we use Poisson distribution in order to 

calculate number of jumps in the stock price. One of 

the crucial assumption of Black-Scholes Model is that 

log- returns over (0, t) equals to normally-distributed 

random variable. This means,  

 

       (
   

  
⁄ ) 

       

 

However, in a jump diffusion model we have 

additional part in the second equation and that is the 

outcomes of each of a random number of jumps. We 

should calculate the number of jumps by Poisson 

distribution. But first of all we should modify Poisson 
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distribution in order to scale the distribution with the 

length of the horizon since jump should become more 

likely over a longer horizon. Number of jumps in the 

interval (0, t) is denoted by  . 

 

            (    )   
     (  ) 

  
 

 

Furthermore, we should specify how the jump 

returns are distributed. Merton (1976) assumed that 

each jump return is normally distributed and jump 

outcomes are independent of each other. So we denote 

a sequence of independent and identically distributed 

random variables by (  )   conditional on there being 

K jumps in the interval (0, t), the returns    are given 

by:  

 
 

Das and Sundaram (1999) show that the first four 

moments of     are: 

 

Mean = (α+ λμ) t 

 

Variance = [     (     )]   

 

Skewness = 
 

√ 
[

 (       

((    (     ))    ⁄
] 

 

Kurtosis = 3 + 
 

 
[
 (            )

((    (     ))  
] 

 

 
Figure 1: Simulated distributions of returns from jump diffusion model 

 

 
The following figures show sample of distributions of 

returns from jump diffusion model which are selected 

from simulated distributions of returns in Python with 

corresponding parameters and specified features 

above: 
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Figure 2: Simulated distributions of returns from jump diffusion model 

 
 

 
Figure 3: Simulated distributions of returns from jump diffusion model 

 
 

2.2. Merton option pricing 

Let S be the current stock price and r be the risk 

free rate of interest. By considering a European call 

option maturing in T years and with strike K. g is the 

expected proportional change in the stock price caused 

by a jump.  

g = exp (μ+
 

 
  ) -1 

 

ξ =  (   ) 
 

ⱴ = ln (1+ g) 
 

For k = 0, 1, 2 … 
 

  
       

 

 
     

 

          
 

 
    

 

Merton shows that the price of the call option under 

the jump diffusion is:  

 

    ∑
     (  ) 

  

 

   
    (           ) 
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The derivation of this formula is not quite as 

straightforward as the Black-Scholes formula. It is not 

possible to set up a portfolio that continuously 

replicates the option. Replication aims to use positions 

in the stock to track changes in the value of the option. 

If the stock price has unexpected jump moves, since 

the position in the stock responds linearly to changes 

in the stock price but the option responds nonlinearly, 

replication becomes impossible. Merton’s approach is 

to assume that jump risk is diversifiable and is not 

priced. Under this assumption, Merton derives a mixed 

partial differential-difference equation that option 

prices must satisfy.  

 

2.3. Implied volatility skew under jump 

diffusion model 

The important motivation behind the development 

of the jump diffusion model is the presence of the 

implied volatility skew in options markets. 

Considering the aforementioned formulas we have 

three possibilities for skewness: 

When μ = 0, there is no skewness in the stock returns 

distribution; skewness is positive when μ >0 and is 

negative when μ <0. From the option prices we back 

out the implied volatilities at various strike prices the 

results are presented in following figures. The range of 

strike prices used is symmetric around the current level 

of stock price. 

 

 
Figure 4: The implied volatility skew under jump diffusion model when μ>0 

 

 
Figure 5: The implied volatility skew under jump diffusion model when μ=0 
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Figure 6: The implied volatility skew under jump diffusion model when μ<0 

 
 

The figures show that away-from-the-money 

options under jump diffusions generally have higher 

implied volatilities than at-the-money options, there is 

an implied volatility skew. When μ = 0, there is no 

skewness and the implied volatility skew is symmetric. 

When μ <0 the negative skewness in the returns 

distribution skews the implied volatility curve so that 

out-of-the-money options puts register higher implied 

volatilities than at-the-money options or out-of-the-

money calls. For μ > 0, the positive skewness means 

that the implied volatility curve is skewed to the right 

with higher implied volatilities for out-of-the-money 

calls than for at-the-money options or for out-of-the-

money puts. 

Jorion (1988) has found some support for the 

model in equity and currency markets. The ability of 

model to generate skewness and excess kurtosis means 

that it is typically able to match observed option 

prices, particularly at short maturities therefore returns 

become approximately normal as maturity increases. 

As a result the implied volatility smile under jump 

diffusion model becomes flat very rapidly, much faster 

than observed in practice.  

 

3. Stochastic volatility model 
Like jump-diffusion model the stochastic volatility 

model makes a single modification to the Black-

Scholes Model. Volatility is allowed to evolve over 

time according to a separate stochastic process. This 

time varying volatility creates fat tails in the returns 

distribution and address one of disadvantages of 

Black-Scholes Model. However, price paths are 

continuous in the stochastic model therefore it does not 

consider market gap. 

For using this model we should specify three 

elements. 1. The underlying stock return process 2. 

The stochastic process of changing in volatility and 3. 

The correlation between changes in volatility and 

stock returns.  

Many stochastic volatility models have been 

proposed in the literature. Most of them are continuous 

time models and few of them are discrete time models.  

 

3.1. Binomial-based stochastic volatility 

model 

As we know the stock price in future will be calculated 

by following equations: 

 

 
 

In the Black-Scholes Model we consider volatility as a 

constant but in stochastic volatility models we specify 

volatility for each period, by doing this we allow the 
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up and down moves to change from period to period, 

therefore our equations will be: 

 
For calculating randomly-changing volatility we 

must first specify the stochastic process for the 

evolution of volatility over time and then use this to 

build the tree. The following formulas are a discrete 

time version of the model of Heston (1993): 

 
   denote the realized period t volatility, the term 

 (    )  called the drift of the process. The term 

 √    represents the randomness in the evolution, the 

parameter   represents the mean long-run variance. 

If current variance is less than    the drift increases 

the variance while if current variance is greater than 

this level the drift decreases the variance. This 

specification for     exhibits mean reversion. The term 

  is the coefficient of mean reversion, it controls the 

speed which variance reverts to its mean. The higher is 

  the faster is variance pushed towards its mean level 

   the parameter   is called volatility of volatility. In a 

nutshell, the model has 3 crucial elements: a long term 

mean level around which volatility evolves, a 

coefficient of mean reversion and a volatility of 

volatility.  

Since both the stock price and volatility can go up or 

down there is a total of four possible outcomes at time 

t+h: 

 

(    
      

 ), (    
      

 ) (    
      

 ) (    
      

 ) 

 

With binomial tree we have: 

 

3.2. Continuous – time stochastic volatility 

models 

Different Continuous – time formulations of 

stochastic volatility have been proposed. One the best 

known model is Heston’s model (1993). There are 

three equations that go into a stochastic volatility 

model description. One for the evolution of stock 

prices, one for the evolution of volatility and the final 

one describing the relation between first two. 

 The first equation in Heston’s model is: 

 

                 
  

 

Here   is the drift of the stock price process and   
  is 

the Brownian motion process. 

The second equation in Heston’s model is: 

 

     (    )    √     
  

 

And the third one is:  

 

E[   
     

 ] = ρ dt 

 

Kurtosis in stock returns in this model is created by 

random changes in volatility. Nonzero correlation 

between changes in volatility and returns results in 

skewness. 

  

3.3. Option pricing under stochastic 

volatility 

When volatility and returns are uncorrelated, Hull 

and White show that option prices in a stochastic 

volatility model may be expressed as a function of 

Black-Scholes process. We consider  ̅as an average 

variance over the life of the option.  ̅ Will depend on 

the particular path of realized variances. Therefore 

h( ̅) denote the probability density function of  ̅  Hull 

and White specify following formula as a call price 

formula:  

 

    ∫    ( ̅) ( ̅)  ̅ 

 

 

 

 

The general case where volatility and returns may 

be correlated is much harder and was solved in closed 

form in Heston’s paper (1993). Heston’s paper had a 

significant impact on option pricing because it opened 
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new technical approach to obtaining closed form 

solutions for option models, one that extended the 

basic setting of Black-Sholes formula and allowed for 

rapid computation of option prices in extended models. 

There are two ways we can derive option prices in 

continuous time setting. One is by using arbitrage 

arguments to reduce the option pricing problem to the 

solution to a partial difference equation. The other is 

by taking expectations under the risk neutral measure.  

The former approach, in most cases, defies closed 

form solutions. The latter involves solving for the 

expectation of the call payoff max {        under 

the risk neutral probability and discounting this back to 

the present time. That is denoting by r the risk-free 

interest rate and by f the risk neutral stock price 

density at T conditional on current information, the 

call price is:  

      ∫(

 

 

    ) (  ) (  ) 

 

The key innovation in Heston’s paper was showing 

that this option price could be solved under stochastic 

volatility by solving to pdes, one each for the analogs 

of N(  ) and N(  ). For more details, you can refer to 

python programming attached in this paper. 

  

4. Implied volatility based on the 

Heston price 

The plots show the volatility surface generated by 

the Heston stochastic volatility model. This is implied 

volatility based on the Heston price, which depends on 

the time to expiration and on moneyness. Recall that 

for a call option, moneyness is the ratio of spot price to 

strike price. The Heston model is described by the 

following stochastic differential equations (SDE): 

 

(dS)/S = μ dt+ d  , 

 

      (     )     √      

 

Where d   and d    are correlated Brownian motions 

with, d  , d  >=ρ. 

The spot price follows the process with drift μ and 

variance    , which is itself a stochastic process 

defined by the second equation. The second SDE is 

mean-reverting (the Cox–Ingersoll–Ross model, 

similar to the Ornstein–Hollenbeck process). Here the 

long-term variance is     the mean reversion (or 

"speed of reversion") is κ, and the volatility of 

variance is σ. And finally there is another parameter 

that does not appear in the SDE, the initial condition 

for variance evolution (Heston 1993). For more 

illustration and visualization, we have simulated 

surface volatility and the following figures are samples 

which are selected from simulated population with 

corresponding parameters (Corresponding codes are 

appended): 

 

 
Figure 7: The implied volatility surface under stochastic volatility model with Low values for parameters 
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Figure 8: The implied volatility surface under stochastic volatility model with Middle values for parameters 

 

 

 
Figure 9: The implied volatility surface under stochastic volatility model with High values for parameters  

 

 

As it is shown different parameters and their 

combinations with together can transform the volatility 

surface figure significantly, therefore, one should try 

to specify these parameters as accurate as possible. 

 

5. Calibration of jump diffusion model 
According to the earlier parts of this paper and 

provided background, Merton incorporated jump 

process in his model. The following figure shows 

Merton Jump diffusion model which has coded in 

Python using corresponding parameters.  It is clear that 

in this model there are gaps which are influenced by 

market fluctuations. 
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Figure 10: Calibration of jump diffusion model 

 

Now, it is time to calculate option price using 

jump diffusion model. One approach to calibrating any 

model is to take the prices of traded options and to 

search over the model’s parameter values so as to best 

match the prices of the options. This is the implied 

parameter approach. In the Black-Scholes Model the 

only unobserved parameter –the volatility- can be 

backed out of the price of a single option. However, in 

the jump diffusion model there are four unobserved 

parameters that need to be fit: the volatility of 

diffusion (σ), the jump probability (λ), the mean of the 

jump (μ) and the variance of the jump (  )   For 

calculating call option price using jump diffusion 

model we have two approach: 1. We can use Monte 

Carlo simulation, or 2. Estimating each of parameters 

with different methods. 

Using Monte Carlo Simulation we need three 

parameters: 1.Spot price, 2. Time to maturity and 3. 

Risk free rate. For example consider the following 

table. 

With Python and MATLAB programming codes call 

price is 5.36 (it can be calculated by appended codes). 

As a second method we can calibrate each of 

parameters aforementioned and then put them in 

Merton jump diffusion model. We have calculated 

option price with this method and get 6.13 (it can be 

calculated by appended codes) comparing to real price 

of 6.25 and Black-Scholes estimate of 5.9. The 

difference between Black-Scholes model and jump 

diffusion model in option pricing has shown in the 

following figure. 

 

 
Figure 11: Call option price calculated by jump diffusion Vs. Black-Scholes model 
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Table 2: Example of jump diffusion model 

Parameters Values Monte Carlo Simulation Estimation 

S0 100 100 100 

X 101 - 101 

R 0.1 0.1 0.1 

Sig 0.25 - 0.25 

Mu 0 - 0 

Gam 0.5 - 0.5 

Lambda 0.1 - 0.1 

T 0.25 0.25 0.25 

 

 

6. Calibration of the stochastic 

volatility model 
There are five unknown variables in the Heston model: 

σ, κ, θ, η and ρ. One method for estimating these 

values is to find the parameters that minimize the sum 

of square difference between the fitted implied 

volatility and those observed in market prices. Other 

method is to minimize the sum of absolute deviations 

of model and market implied volatility. In order to 

visualize Heston model in three dimensions we used 

following parameters to run our Python code and 

demonstrate it.  

 

Table 3: Example of stochastic volatility model 

S 200 

v 0.8 

r 0.1 

dividend 0 

Kappa 1 

Theta 0.4 

Eta 15 

Rho -0.5 

Up 0.1 

Down -0.1 

UpSigma 0.02 

DownSigma 0.02 

StepSize 0.4 

 

 
Figure 8: Visualization of Heston model 

 



International Journal of Finance and Managerial Accounting    / 95 

 Vol.6 / No.20 / Winter 2021 

 
Figure 13: Call option price calculated by stochastic Vs. Black-Scholes model 

 

At low maturities changing volatility has not had 

enough time to create excess kurtosis, while at long 

maturities mean reversion eliminates excess kurtosis. 

Stochastic volatility models have only limited impact 

on short dated option prices. And the evidence that the 

option smile in equities markets remains steep even at 

very long maturities (Foresi and Wu, 2005) suggests 

that these models may not do well at matching the data 

unless other factors are also included in the models.  

Empirically, as with jump diffusion model the 

evidence about stochastic volatility model is mixed. 

Varying degrees of support of such models have been 

found in different markets (Bates. 1996). The model’s 

ability to generate skewness and excess kurtosis 

enables it to better fit observed option prices than the 

Black-Scholes model. However, stochastic volatility 

models imply a hump shaped pattern of excess kurtosis 

(Das and Sundaram, 1999). 

 

7. Conclusion 
This paper made effort to illustrate Jump diffusion and 

stochastic volatility models and concepts. 

To achieve profound knowledge considering those 

models we modelized them in Python and MATLAB.  

As it has shown jump diffusion model could explain 

implied volatility which cannot be explained by Black-

Scholes model and because it considers jumps between 

prices its results provide better estimation for realized 

option price. On the other hand, Stochastic volatility 

model not only considers implied volatility but also 

suppose the volatility is mutable, using simulation we 

concluded that this model also has better estimation 

power than Black-Scholes model to predict option 

price. Each model obtains some improvement over 

Black-Scholes but none is also a completely 

satisfactory resolution of the non-normality problem. 

This has to led to the proposal of several further and 

technically more sophisticated alternatives such as the 

variance - gamma model and the log stable model as 

well as models based on stable-Paretian and inverse- 

Gaussian process. 
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