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ABSTRACT 
Selecting an appropriate portfolio making an optimal trade of between the return of assets and the associated 

risk of them has been always a fundamental challenge for different investors with different types of assets. The 

problem becomes more complex for an investor investing in private companies of which she doesn’t have enough 

data to evaluate its return and risk. Furthermore, this type of investment involves selecting more high risk assets 

which may not meet the risk attitude of the investor. In this study, a bi-objective portfolio optimization model has 

been developed to determine the best sets of portfolios for a private investing company. Due to the lack of data on 

private assets, a simulation based approach has been used to estimate the return of different assets as well as their 

correlations. A Covariance-Based Artificial Bee Colony is applied to solve the model. The results show that 

optimal portfolios consist both high-risk and low-risk assets. 
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1. Introduction 
Portfolio selection is one of the most common 

problems faced by many investors with different 

amounts of capital and is one of the most complex 

problems in the finance world (Qu & Suganthan, 

2011). It can include from relatively small portfolios 

with few stocks, real states, etc. held by common 

individual investors to large ones with various types of 

assets managed by expert investors. The key issue in 

portfolio selection is to choose the best possible 

combination of assets and to determine their 

corresponding weights (Mishra, Panda, & Majhi, 

2016) .The most well-known and common model 

presented for portfolio optimization is the one 

introduced by Markowitz in 1952. The model is based 

on two main goals of any investor in choosing a 

portfolio, the first one is to ensure a definite level of 

returns from the portfolio and the other one is to avoid 

the risks arise from the losses due to the market 

fluctuations. He proved that in an ideal world, the 

investor is seeking for the optimal portfolio, e.g. a 

portfolio minimizing the risk (keep the risk at a desired 

level) while maximizing the return of it (Markowitz, 

1952). Optimal decision is made based on the existing 

trade-off between risk and return estimates of any 

asset. Optimal portfolio selection is considered a 

difficult problem due to two main reasons. First, 

investors have to deal with the risks inherent in the 

selected assets in the portfolio while maximizing the 

return of the investment in the assets (Mishra, Panda, 

& Majhi, 2014). Furthermore, there are various 

requirements that an investor should take into 

consideration in its investment decision which are not 

included in Markowitz model (Macedo, Godinho, & 

Alves, 2017). Therefore many practical constraints 

have been added to the basic Markowitz model during 

recent years to make the model more practical in real-

world problems (Ponsich, Jaimes, & Coello, 2013). 

The most common types of these constraints are the 

lower and upper bound on the invested capital in each 

asset, the limitations on the number of the purchased 

assets, and lot size constraint imposed on the 

purchased stocks of a specific type, i.e. it is required to 

buy a security of any type in lots (Kumar & Mishra, 

2017). In addition to these constraints, recent studies 

there has been a growing attention to other return and 

risk measures in portfolio optimization. These 

functions and constraints can make the main problem 

nonlinear, non-convex, with integer variables, which 

consequently convert it to a NP-Hard problem 

(Saborido, Ruiz, Bermúdez, Vercher, & Luque, 2016). 

Many studies have tried to model the problem in a 

form of Linear Problem (LP), Mixed-Integer 

Programming (MIP) and Mixed-Integer Non-Linear 

Programming (MINLP) (Mansini, Ogryczak, & 

Speranza, 2014) and Mixed-Integer Quadratic 

Programming (MIQP). These models have been 

proven to be generally NP-Hard problem (Mansini & 

Speranza, 1999). To tackle these problems meta-

heuristic algorithms have been proven to have good 

performance to find near to optimal solutions  (Talbi, 

2009).  

 In this paper we have focused on using heuristic 

and meta-heuristic methods to solve the portfolio 

optimization problem with lack of data. The previous 

studies tackle the portfolio optimization problem for 

tradable assets such as stocks for which there are 

abundant amount of data to analyze and compute risks 

and returns. However, the conditions for non-tradable 

assets such as private equities are thoroughly different 

as the main issue in selecting these types of assets is 

the lack of reliable data to calculate their risks and 

returns. In this study we use a simulation-based 

approach to estimate the return of equity of private 

companies as well as their correlations. Furthermore, 

we developed our model based on a real case study 

problem in Iran. 

 

2. Literature Review 
Based on the approach of modeling, the related 

studies can be divided into two main groups. The first 

group tackle the problem as a single objective model 

by considering the risk of the portfolio as the only 

objective function which should be minimized with 

respect to a definite level of return, while the other 

group considers the problem as a multi-objective 

optimization problem (MOOP) aiming to find the best 

solutions that optimize different objective functions 

(Subbu, Bonissone, Eklund, Bollapragada, & 

Chalermkraivuth, 2005),12] use a novel risk measure 

as the single objective function for the problem and 

solve it by Particle Swarm Optimization (PSO) 

algorithm. The Sharpe ratio has been used as the 

objective function by (Fu, Chung, & Chung, 2013). 

They adopt a typical genetic algorithm (GA) to 

optimize the parameters of the technical analysis and a 

hierarchical genetic algorithm to find the optimal 

portfolio based on maximizing the Sharpe Ratio. (W. 
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Chen, 2015) applies an Artificial Bee Colony for a 

possibilistic portfolio selection in which the risk of 

portfolio should be minimized while the difference 

between the expected value of returns and transaction 

costs must be higher than a predetermined level. In his 

model, the risk of portfolio should be minimized. 

(Liao, Chen, Kuo, & Chou, 2015) Introduce a new risk 

assessment strategy, called fund standardization in 

order to reduce the complexity of the risk calculation 

in Markowitz model. They adopt a genetic algorithm 

to optimize portfolio selection based on maximizing 

the Sharpe Ratio. Besides return, (Mansini, Ogryczak, 

& Speranza, 2015)consider the transaction costs for 

investment process in which the investors incur 

commissions and other costs. Then the total return of 

the investment can be expressed as the difference 

between the returns and the costs. 

 As it is observed, the nature of portfolio 

optimization is a multi-objective optimization problem 

(MOOP). An investor aims to reach optimum levels of 

different objective function, i.e. the return and the risk. 

Therefore, various researches have modeled the 

problem, based on Markowitz model, as a MOOP and 

used multi-objective optimization techniques to solve 

it. Particularly, due to the fact that the problem is NP-

Hard, the focus of the majority of recent studies has 

been on applying multi-objective evolutionary 

algorithms and swarm intelligence to solve the 

problem (Anagnostopoulos & Mamanis, 2011) 

compare the performance of five multi-objective 

evolutionary algorithms, namely Niched Pareto genetic 

algorithm 2 (NPGA2), non-dominated sorting genetic 

algorithm II(NSGA-II), Pareto envelope-based 

selection algorithm (PESA), strength Pareto 

evolutionary algorithm 2 (SPEA2), and e-multi 

objective evolutionary algorithm (e-MOEA) for 

solving a bi-objective portfolio selection problem, i.e. 

minimization of the risk and maximizing the return 

with cardinality constraints. A fuzzy multi-objective 

genetic algorithm is applied by (Bermúdez, Segura, & 

Vercher, 2012) to tackle the optimal portfolio selection 

problem with uncertainties in the risk and return. They 

try to capture the uncertainty of the return and the risk 

through fuzzy logic and define the risk and the return 

as trapezoidal fuzzy numbers. Then they use a genetic 

algorithm to reach the fuzzy ranking strategy for 

selecting efficient portfolios with cardinality 

constraint. (A. H. Chen, Liang, & Liu, 2012) use an 

artificial bee colony algorithm to optimize the 

portfolio selection. Using a risk aversion parameter, 

they convert the bi-objective optimization model to a 

single objective one. The similar approach of 

conversion is used by (Deng, Lin, & Lo, 2012). They 

present an improved type of particle swarm 

optimization to tackle the portfolio optimization 

problem. (Vijayalakshmi Pai & Michel, 2012) solve a 

multi-objective constrained futures portfolio problem 

considering different types of assets. They introduce 

Herfindahl Index as a measure of portfolio 

diversification which should be minimized as well as 

the risk of portfolio and present a combination of 

multi-objective evolution strategy and multi-objective 

differential evolution to solve the problem. In a recent 

study conducted by (Kumar & Mishra, 2017) a novel 

multi-objective Artificial Bee Colony (ABC) named 

the Multi-objective Co-variance based ABC (M-

CABC) is introduced to solve the multi-objective 

portfolio problem with cardinality constraints in which 

the risk and the return of the portfolio should be 

optimized.  

Recently there has been a growing attention to 

other criteria as the objective function in the model.  

An invasive weed optimization (IWO) algorithm is 

used by (Pouya, Solimanpur, & Rezaee, 2016) to solve 

the multi-objective portfolio problem. Beside risk, the 

authors define P/E ratio and expert recommendation as 

other objective functions which should be optimized 

simultaneously. (Saborido et al., 2016) presents a 

novel multi-objective evolutionary algorithm to 

optimize the Mean-Downside Risk-Skewness (MDRS) 

model proposed for portfolio selection. Three 

objective functions have been taken into account in the 

model: the expected return, the down-side risk and the 

skewness of a given portfolio.  

Artificial Bee Colony (ABC) algorithm is based on 

swarm intelligence simulates the intelligent foraging 

behavior of a honeybee swarm and in recent years was 

one of the most widely studied and deployed, 

algorithms. It was firstly developed by Karaboga in 

2005 for numerical optimization (Karaboga, 2005) and 

has been proven to have a superior performance in 

comparison with other swarm intelligence algorithms 

(Karaboga & Akay, 2009; Karaboga & Basturk, 2008). 

For example (Karaboga, 2005) have comprehensively 

compared the performance of ABC algorithm with 

different single-based and population-based meta-

heuristic algorithms, such as Simulated Annealing 

(SA), Differential Evolution (DE), PSO and GA on a 



26 /   Multi objective portfolio optimization for a private equity investment company … 

Vol.6 / No.21 / Spring 2021 

large set of test problems. Furthermore, (Akbari, 

Hedayatzadeh, Ziarati, & Hassanizadeh, 2012) have 

shown that this algorithm has superior performance for 

unconstrained multi-objective problems. (W. Chen, 

2015) proposed an ABC algorithm to solve the 

cardinality-constrained portfolio optimization 

problems and compared its performance with Tabu 

Search (TS), SA, and Variable Neighborhood Search 

(VNS) on three sets of data test. The results signified 

the superiority of ABC algorithm in terms of diversity, 

convergence, and effectiveness among all sets. 

   In this paper, we aim to use the Multi-objective 

Co-variance based ABC (M-CABC) presented by  

(Kumar & Mishra, 2017) to solve the portfolio 

selection for an investment company holding shares of 

different private IT companies offering software or 

hardware services in Iran. The algorithm has been 

proven to be more efficient to solve portfolio 

optimization problem compared with ordinary multi-

objective ABC (Kumar & Mishra, 2017).  Our basic 

model has some similarities to Markowitz model, 

however due to the fact that we deal with private 

companies we use return on equity (ROE) as one of 

our objective functions. We consider the cardinality 

constraints as well as specific requirements set by the 

company in investing in assets.  Also, due to the lack 

of financial data of the companies, a simulation 

approach has been applied to calculate ROEs of them 

in the lack of information condition. 

 

3. Mathematical model  
In this section, we first introduce the basic 

Markowitz model for multi-objective portfolio 

optimization. Then the constraints which should be 

considered in portfolio selection procedure will be 

added to the model and, finally the other objective 

functions which are of our interest will be defined.  

The Basic Markowitz Model 

Suppose that there are n available securities and xi is 

the proportion of the total available capital invested in 

ith asset, then the problem can be defined as follows: 

 

           ( )  ∑ ∑        
 
   

 
     (1) 

 

            ( )  ∑     
 
       (2) 

 

In the above equations     is the element of covariance 

matrix between company i and company j and ri is the 

return of asset i. These functions should be optimized 

by satisfying the following set of constraints 

 

∑      
       (3) 

 

           {       }   (4) 

 

Equation (3) ensures that the sum of the fractions 

invested in securities is 1 meaning that all of money 

should be invested. The inequalities in (4) state that the 

fractions must take value between 0 and 1. 

 

3.1. Set of Common Constraints 

The majority of studies related to portfolio 

optimization of stocks used the following constraints 

in order to take the real world limitations into account 

in their model (Tapia & Coello, 2007) (Qu & 

Suganthan, 2011). 

a) Upper bound and lower bound on investments 

This constraint sets limitations on the minimum 

and the maximum level of investments in each 

company. That is, if xi takes a value rather than 0, 

the following must hold: 

                   (5) 

 

Where   and   are the lower bound and the upper 

bound on the investment value, respectively. 

b) Cardinality Constraint 

This constraint limits the total number of 

purchased securities in the portfolio. There are two 

types of cardinality constraint. In the first one the 

number of selected assets should be equal to a 

predetermined value, K, while in the second one 

the number of purchased assets must be between a 

lower and upper bound.  

In order to set this constraint in the primary model, 

first we define a binary variable, zi according to 

equation (6). 

   {
          
           

   (6) 

 

Now, the first type of cardinality constraint is 

defined as follows: 

∑   
 
        (7) 

 

For the second type, we have to define    and    

as the lower bound and the upper bound 

respectively. So the constraint will take the 

following form: 
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   ∑   
 
          (8) 

c) Round lot constraint 

According to this constraint, the securities must be 

purchased in lots. That is, the invested money for 

buying each type of security must be an integer 

multiple of the price of that security (Equation 

(9)). 

                 (9) 

 

3.2. Company-Specific Constraints 

As mentioned in previous section, we aim to 

optimize the portfolio assets for a company seeking to 

invest in private equities, e.g. invest in its subsidiary 

companies having different levels of maturity, i.e. 

some of them are startup companies. In order to reach 

this goal, the company has set two specific 

requirements for its portfolio of assets. First of all, due 

to the high risk level associated with startup 

companies, the share of them in portfolio shouldn’t 

exceed a predetermined value, 0.25. Let define the j as 

index of the startup companies having an age of less 

than 3 years,   { |                   }  

Therefore the constraint can be expressed according to 

the following equation: 

 

∑             (10) 

 

The second issue is using risk free rate bonds as a part 

of the company’s portfolio to modify the liquidity risk 

and the credit risk of the portfolio. For this purpose we 

define k as risk free rate assets having a zero level of 

risk and a return less than 15%, e.g. Islamic Bonds, 

  { |                    }  

 

The corresponding constraint can be written as 

follows: 

 

∑            (11) 

 

3.3. Other Objective Functions 

As it was mentioned earlier, in addition to the risk and 

the return of the portfolio, there has been a growing 

attention to other criteria such as P/E ratio and Sharpe 

Ratio as other objective functions which should be 

optimized, as well. Investors prefer to buy the 

securities with lower P/E ratio and higher Sharpe 

Ratio.  

a) Return on Equity 

ROE is used as a measure of profitability of a 

company and can be used as the return value in 

Markowitz model. It is calculated by multiplying 

Return on Asset in the Leverage, e.g. the ratio of 

assets to equity.  

                  (12) 

 

4. Simulation Method for ROE 

Calculation 
With respect to the fact that there is not enough 

data on private equities a simulation approach has been 

applied to calculate the return and the elements of the 

risk. The simulation procedure is based on Latin 

Hypercube Sampling which is able to generate more 

viable samples when there is low amount of available 

data. LHS is a stratified Monte-Carlo (MC) simulation 

method which was developed by Conover in 1975 for 

the first time to improve the efficiency of the simple 

MC sampling (Iman, 2008). 

 Let Xi be a random variable having a distribution 

function F(x).  The stratification procedure of LHS is 

accomplished by dividing F(x) into n disjoint intervals 

of equal length, where n is the number of computer 

runs to be made. Through the inverse function F-1(x), 

these n intervals divide the sample space of x into n 

intervals. The mapped intervals have the same 

probability, although they might not have equal length 

in the x space. Consequently, the x space is stratified 

into n non-overlapping intervals with equal 

probabilities. The next step in LHS scheme requires 

the random selection of a value within each of these 

intervals on the vertical axis. When these values are 

mapped through F-1(x), exactly one value will be 

selected from each of the intervals previously defined 

on the horizontal axis. This process serves to emulate 

the pairing of observations in a simple Monte Carlo 

process (McKay, Beckman, & Conover, 1979) . 

 

5. Multi-objective Co-variance based 

Artificial Bee Colony Algorithm 
Artificial Bee Colony (ABC) algorithm is based on 

swarm intelligence and in recent years was one of the 

most widely studied and deployed, algorithms. It was 

firstly developed by Karaboga in 2005 for numerical 

optimization (Karaboga, 2005) and has been proven to 

have a superior performance in comparison with other 

swarm intelligence algorithms (Karaboga & Akay, 

2009; Karaboga & Basturk, 2008) It inspired by the 
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intelligent foraging behavior of a honey bee swarm. In 

reality, honey bees live in crowded colonies and 

maintain a complex social organization. 

 

5.1. The Basics of ABC Algorithm  

Generally, three groups of bees are considered in 

the colony; they are employed bees, onlookers and 

scouts. The ABC algorithm uses these three types of 

bees which constantly improve the solution. The scout 

bees have the duty of exploring new locations in the 

search space. Therefore, the initial generation of all 

candidate solutions is discovered by scout bees i.e. 

initial population is created randomly. Thereafter, the 

nectar of food sources is utilized by joint cooperation 

of all three types of bees. The employed bees of every 

generation explore the search space and find the food 

sources of varied quality. The onlookers will exploit 

the search space in the proximity of the better food 

sources only. The employed bees whose food source 

has been exhausted are initialized randomly in the 

scout bee phase. These cycles of continual exploration 

and exploitation results in either of two situations (i) 

the final solution is searched out (ii) food sources are 

exhausted. The important parameters and steps of the 

algorithm is described as follows: 

 

Parameter Definition 

  
⃗⃗ ⃗⃗  ⃗{(     
      )} 

candidate solution m
th

 

D number of dimensions in the problem 

  
⃗⃗ ⃗⃗   neighborhood of   

⃗⃗ ⃗⃗  ⃗ 

    value of m
th
 variable on d

th
 dimension 

| | population size 

    lower bound for the i
th

 dimension 

    upper bound for the i
th

 dimension 

    random number within a random range (-1, 1) 

 

Algorithm 1. ABC General Scheme  

Step1: Initialization phase. 

//generate initial population 

For each bee m and each dimension i 

               (   )  (       )            

(13) 

Step2: Repeat step 2.1 through 2.4 until (termination 

condition) 

2.1: Employed bee phase. 

//explore whole search space 

For each bee m and any random dimension i and 

random bee k 

           (       )  (14) 

 

       (  
⃗⃗ ⃗⃗  ⃗)  {

 

   (  ⃗⃗ ⃗⃗ ⃗⃗  )
      (  

⃗⃗ ⃗⃗  ⃗)    

     ( (  
⃗⃗ ⃗⃗  ⃗))       (  

⃗⃗ ⃗⃗  ⃗)   
} (15) 

 

  
⃗⃗ ⃗⃗  ⃗            (  

⃗⃗ ⃗⃗  ⃗   
⃗⃗⃗⃗  ⃗)   (16) 

  

2,2: Onlooker bee phase. 

//exploit food sources containing high nectar 

amount. 

Choose an employed bee according to the probability 

pm 

               
   (  ⃗⃗ ⃗⃗⃗⃗  )

∑    (  ⃗⃗ ⃗⃗ ⃗⃗  )
| |
   

   (17)

  

And use equations (14)-(16) again for exploitation 

 2.3: Scout Bee Phase 

 //search new points instead of the points 

which cannot be further evolved 

 For each bee m, if its fitness function is not 

improving, use equation (13) to re-create it. 

 Save the best found solution until now 

Step3: Return the saved best solution  

 

5.2. Co-Variance Matrix for Direction 

Improvement 

Deterministic optimization techniques such as 

Newton-Raphson method use the information of 

gradient of a function to iteratively find the optimum 

solution. For an n-dimension function, given we are in 

the kth iteration, the new point,    , is calculated 

according to equation (18) 

        
 (  )

  (  )
    (18) 

 

Therefore, the search direction          can be 

defined as follows: 

         
  (  )

   (  )
 

 

    (   (  ))
  

 (  (  )) 

 

      
      

 

Where,   , is the search direction, and (   (  ))
  

 or 

  
   is the symmetric Hessian Matrix in which 

     
   

      
. The information of gradients (the first 
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order derivatives) and Hessian (the second order 

derivative) are necessary for all of deterministic 

optimization techniques to converge to the local/global 

optima. However, calculation of gradient and Hessian 

Matrix is a complex task for high dimensional 

problems. Therefore, we use covariance matrices as a 

good way for approximating the gradient g and 

Hessian matrix H or B-1 . Co-variance is used to 

measure the similarity of movement between any two 

variables, and the co-variance matrix C can be 

considered in the same as the inverse of Hessian 

matrix. The calculation procedure is as follows: 

Algorithm 2. Calculation of Co-variance Matrix C. 

Input: Data set of N independent samples, each of size 

d, Input is of the form: 

 

{

             
             

                           
              

} 

 

Output: Cd×d, the co-variance matrix 

  Dd×d, a diagonal matrix with eigen values of 

C 

  Bd×d, an orthogonal matrix with the property 

BTB=BBT=I 

 Step 1: For each dimension i   {1, 2,…, d} 

calculate mean  ̅  as   ̅  
 

 
∑    

 
    

 Step 2: For each dimension i , j   {1, 2,…, 

d}       
 

 
∑ (     ̅ )(     ̅ )

 
     

 Step 3: Eigen decompose C into B and D as 

C=BD2BT 

There are two phases in every multi-objective 

algorithm to find the optimal solution: (1) to determine 

the non-dominated rank of one solution over another 

and (2) to generate offspring population from the best 

(non-dominated) parent solutions. In M-CABC the 

NSGA-2 algorithm is used to calculate the non-

dominated rank of solutions and to generate the non-

dominated fronts F1, F2, F3, …, Fn. The procedure for 

M-CABC algorithm will be as follows: 

Algorithm 3. Multi-objective Co-variance Based ABC 

(M-CABC) 

Inputs: Number of Dimensions in Problem: d, 

Maximum Number of Cycles: mx 

Output: P* (Pareto-optimal set) 

Step 1: Initialization phase 

1.1: bee hive size=d*10 

 1.2: number of employed bees (e) =bee hive 

size/2 

 1.3: number of onlooker bees (o) =bee hive 

size/2 

 1.4:  = random number between −1 and 1 

 1.5: φ= random number between 0 and 1 

 1.6: Identity matrix of size d×d 

 1.7: B=normalized eigen vectors of C 

 1.8: D=diagonal matrix with square root of 

eigen values of C 

 1.9: scout bee limit (limit) = d*10 

 1.10: generation number (g) =0 

 1.11: σ=0.5 

  1.12: Generate initial population Pg of size e 

Step 2: Perform Non-dominated Sorting of Pg using 

NSGA-2 ranking procedure and generate non-

dominated fronts F1, F2, F3, …, Fn. 

Step 3: Repeat step 3.1 through 3.7 until (g < mx) 

 3.1: Employed bee phase 

3.2: Onlooker bee phase 

3.3: Scout bee phase 

3.4: g=g+1 

3.5: hive= {employed bees ∪ onlooker bees} 

3.6: Perform non-dominated sorting on hive 

using NSGA-2 algorithm and form fronts 

 3.7: Pg = Best e solutions from hive  

Step 4: Return front F1 

The scout bee limit (limit) is ten times the number of 

dimension i.e. any bee in the bee hive will be 

initialized randomly if there is no improvement in the 

solution since last d×10 iterations. Generation number 

is a counter that holds the record of number of 

iterations executed so far. σ is the magnitude operator. 

It is a basic control parameter which is used for 

controlling the nearness and farness of child solution 

from parent.  

Algorithm 4. Employed Bee Phase of M-CABC 

Step1: For each ith employed bee 

  [  
    

      
      

 ]   {     } repeat step 1.1 

through 

step 1.7. 

 1.1: Select any random solution and any 

solution BEST [b1, b2, …, bk,…, bd] from front F1. 

 1.2: Find a random dimension dm to change  

 1.3:   
       

 1.4:         
     

 
 

 1.5:             
  

 1.6:    
       

   (   )   (   ) 
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1.7:                             (  
      ) 

In employed bee phase we have used two distance 

measures, dfn (distance from any random employed 

bee in the search space) and dfb (distance of employed 

bee from any solution BEST lying in the best front i.e. 

the pareto optimal front F1 The proper combination of 

the aforementioned two distance estimates i.e. dfn and 

dfb are used in the step 1.6 of Algorithm 4. This 

formula helps in getting an extremely balanced and 

guided exploration. 

 

Algorithm 5. Pareto Optimal Selection 

Input: Two solutions A[a1, a2,… , ad] , B[b1, b2, … , 

bd]  

Output: O* 

Step 1: If    {     }   (  )    ( ⃗ )   (   

{     }  (  )    ( ⃗ )) //solution  (  ) is as good as 

 ( ⃗ ) for all k objective functions and  (  ) is strictly 

better than  ( ⃗ ) for at least one objective then return 

(A) else return (B).  

 

Algorithm 6. Onlooker Bee Phase of M-CABC. 

Step 1: For each front Fj :     ⌈     ⌉،  

repeat step 1.1 through 1.5 

1.1: Find C, B and D for the front Fj 

1.2: Find m, the mean of solutions on front 

Fj 

1.3: ⌈       ⌉ // number of onlooker bees 

assigned to this front 

1.4: e=e-nof // remaining onlooker bees for 

subsequent fronts 

1.5: For each ith onlooker bee Zi :   

{       } 

 1.5.1. Create a random vector         

(   ) 

1.5.2.           

Step 2: Reset e 

 

Algorithm 7. Scout Bee Phase of M-CABC  

Step 1: For each ith bee in hive      {    (   )} 

Repeat step 1.1 

1.1. If the fitness Si is not improving since 

limit number of iterations then re-

initialize Si randomly. 

In traditional ABC algorithm, more number of 

onlooker bees are moved towards better solutions. In 

M-CABC half of the onlooker bees (nof) are guided to 

the current best front. From the remaining bees (e-nof) 

half of them are sent to the next available front and so 

on. In this way ⌈     ⌉  numbers of fronts are 

explored by onlooker bees. The formation of onlooker 

bees is done using the co-variance matrices in the 

formula         . A solution, whose fitness is 

not increasing since last limit number of iterations, is 

reinitialized in the scout bee phase. The diagonal 

elements of matrix d represent the actual length of the 

axes of d dimensional distribution ellipsoid. In this 

way the concept of co-variance helps in coordinating a 

regulated exploitation of the mean solution m along a 

virtual ellipsoid. 

 

5.3. Chromosome Representation 

For an n security problem, each solution is represented 

by an n dimensional vector of real numbers. The 

constraints in equation 3-5 and equations 8-9 are 

considered in the optimization algorithm. Thus, a 

solution i.e. (a portfolio of the shares of the 

companies) is represented by the vector 

              possessing the following properties: 

 

( )    {     }    {  ∪  } 

 

( )  ∑    
 

   
   

 

( )    {     }                

 

(d)              

 

(e) Total number of non-zero pi is limited in the range 

       ] 

 

Where A is the total available capital to invest and 

pricei is the price of ith company’s share. Thus we can 

define the money invested in ith company, I, as 

follows: 

  {
              
             

}    

    

5.4. Generating Initial Population 

The initial population is an e×n matrix, where e and n 

are the number of population and the dimension of the 

problem, respectively. The numbers are generated 

randomly in the range of [0,1). The procedure for 

generating initial population is described in Algorithm 

8. The generated population of initial solutions may 



International Journal of Finance and Managerial Accounting    / 31 

 Vol.6 / No.21 / Spring 2021 

not satisfy all set of constraints. We use the procedure 

in Algorithm 9.  

Algorithm 8. Initial Population Generation 

Inputs: Number of securities: n 

 Population Size: e 

Output:  

Initial Population: 

P=

{
 

 
  

   
   

    
 

  
   

   
    

 

                           
   

   
   

    
 }
 

 
 

 

Step 1: For each population member pj, j  {1,2,…,e} 

and for each dimension i  {1,2,…,n} repeat step 1.1 

 1.1:   
 
= random number [0,1) 

Step 2: For each portfolio P j, j  {1,2,…,e} repeat step 

2.1 

 2.1: Clean P j 

 

Algorithm 9. Clean Chromosome. 

Inputs:  Un-constrained portfolio: P {          } 

 Minimum number of securities in portfolio: 

   

 Maximum number of securities in portfolio: 

   

 Minimum investment in any security in 

portfolio:   

 Maximum investment in any security in 

portfolio:   

Output: Cleaned portfolio P, satisfying all constraints. 

Step 1: nz = non-zero securities in P 

Step 2: If    <    then Re-initialize (     ) number 

of zeroed securities to random number (0,1) and set 

      

Step 3: If        then Re-initialize (     ) 

number of non-zero securities to 0 and set       

Step 4: For each dimension i  {1,2,…,n} if      

then      

Step 5: Set vti=0 

Step 6: For each dimension i  {1,2,…,n}         

   

Step 7:       (    ) 

Step 8: For each dimension i  {1,2,…,n} If        

then      (
  

   
    ) 

 

 

 

 

6. Finding and Analysis 

In this section, we will try to solve the defined 

problem by means of simulation technique combined 

with the meta-heuristic algorithm, M-CABC. 

Afterwards, we will compare M-CABC and NSGAII 

to investigate their performance in solving the problem 

based on predefined performance measures. The 

importance of finding closed-form solutions and the 

consequent search for simpler models, and when 

required, complex models provide stronger emphasis 

for computationally-intensive methods such as Monte 

Carlo simulations, numerical approximations to 

differential equations (ordinary and stochastic), 

population based approaches, metaheuristic of 

uncertain possibilities in a search space etc. provide 

just a gist of a variety of possibilities that 

computational sciences tend to offer. Addressing the 

availability of such high-valued computing techniques, 

and to overcome challenges faced by deterministic 

optimization methods, this work does focus towards 

having a look at stochastic-search based optimization 

routines towards optimal asset allocation strategies. 

The Excel software used to calculate the input data. To 

determine the portfolio for each year, genetic, artificial 

ant colony and colony of bee algorithms were analyzed 

using MATLAB 2018. For the analysis of algorithms, 

Minitab software was used. After performing the steps 

listed in the previous parts and collecting the required 

data from mature and startup companies for the years 

between 2005 and 2020, and solving Markowitz model 

through artificial bee colony, ant algorithm using 

MATLAB software for each selected year. Each 

basket was included in the basket of stocks and 

weighing per share and for each portfolio returns, risk 

and sharp measure calculated. The return and the risk 

of companies have been calculated by @risk 

simulation software. First the 5-year ROA and 

Leverage of companies has been calculated based on 

their financial statements in 5 years. Given that this 

amount of data is not enough for estimating ROA and 

Leverage, a simulation approach has been applied to 

estimate these two parameters.  

The simulation generates 10000 different scenarios for 

each of these parameters using Latin Hypercube 

sampling (LHS) method. In this method the given 

cumulative probability distribution used for generating 

random numbers is divided to equal intervals from 

which the random numbers are selected and generated 

(the number of intervals are equal to the number of 
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scenarios). The simulation process leads to generation 

of two sets of distributions for ROA and Leverage, 

respectively (see Figure 1). The mean of these 

distributions are used in Equation (12) to estimate the 

ROE of the companies. As it was mentioned before, 

ROE has been used to calculate the return of portfolio.   

 

 
Figure 1-The distribution of ROA and Leverage for a given company based on 10000 scenario generation using @Risk 

simulation software 

 

In order to calculate the risk of portfolio the 

correlation matrix for the companies should be 

defined. The @Risk simulation software was used to 

calculate the elements of this matrix,    . Finally, the 

optimal portfolio regarding two defined objective 

functions and can be obtained by means of multi-

objective Co-variance based Artificial Bee Colony 

algorithm.  

 

Table 1- The results of simulation of ROA and LEVERAGE of the companies. ROE is calculated through multiplying 

ROA by LEVERAGE 

ASSET NAME ROA LEVERAGE ROE 

COMPANY 1(M)* 0.079 3.69 0.294 

COMPANY 2(M) 0.130 2.64 0.344 

COMPANY 3(M) 0.128 2.60 0.333 

COMPANY 4(M) 0.160 1.86 0.299 

COMPANY 5(S)* 0.164 2.84 0.468 

COMPANY 6(S) 0.405 2.72 0.471 

COMPANY 7(S) 0.189 2.92 0.351 

ISLAMIC BOND - - 0.15 (rate of return) 

* (M): Mature Company (S): Startup Company 

 

The minimum and maximum level for the number of 

selected assets in the portfolio,    and  , has been set 

as 4 and 6, respectively. The lower and upper bound 

for investing in each asset class has been determined 

separately. The lower bound for mature companies 

(Company 1 to Company 4) and startup companies 

(Companies 5 to 7) are set 0.1 and 0.05, respectively 

and the upper bounds to invest in them are 0.5 and 

0.25. As mentioned in mathematical model section, the 

sum of high risk companies (startup companies) 

weights shouldn’t exceed 0.25 of the entire portfolio. 

Also the Islamic Bond should always be selected in the 

portfolio for which the lower bound is considered as 

0.1 and the upper bound is 1.  

 

Table 2- The lower bound and upper bound for investing in each asset class  

ASSET NAME LOWER BOUND UPPER BOUND 

COMPANY 1 0.1 0.5 

COMPANY 2 0.1 0.5 

COMPANY 3 0.1 0.5 

COMPANY 4 0.1 0.5 

COMPANY 5 0.05 0.25 
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ASSET NAME LOWER BOUND UPPER BOUND 

COMPANY 6 0.05 0.25 

COMPANY 7 0.05 0.25 

ISLAMIC BOND 0.1 1 

 

 
Figure 2. The Pareto Optimal solutions for the bi-objective optimization problem 

 

 

According to Figure 2, it is observed that there are 25 

non-dominated solutions for the problem. The F1 and 

F2 axis indicate the risk and the return of portfolio, 

respectively. Figure (3) shows the participation 

percentage of each asset class in Pareto Optimal 

portfolio. Below table one of these 25 optimal 

solutions is shown with its respective risk and return.  

As it is observed in this solution, the number of 

selected assets is 6 indicating that we have 6 different 

types of assets in our selected portfolio having a return 

rate of 28%. 

 

Solution Risk Return 

[0.149 0.201 0.201 0.201

 0.086   0.00     0.00     0.160] 
0.035 0.28 

 

 

 

 
Figure 3- The percentage of asset participation in pareto optimal solutions  

0.02 0.025 0.03 0.035 0.04 0.045 0.05
0.255

0.26

0.265

0.27

0.275

0.28

0.285

0.29

0.295

 F 1 

 F
 2

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Company 1 Company 2 Company 3 Company 4 Company 5 Company 6 Company 7 Islamic Bond

Participation  in Pareto Solution (%) 



34 /   Multi objective portfolio optimization for a private equity investment company … 

Vol.6 / No.21 / Spring 2021 

 

As it is observed, an optimal portfolio from both 

risk and return’s point of view is formed by a 

combination of mature and startup companies. That is, 

one company from each type (mature and startup) 

should be selected to reach the optimal solutions. As it 

is observed Company 2 as a mature company along 

with company 5 as a startup one are selected in all 

optimal portfolios. On the other hand, Company 7 is 

the least desirable asset to invest in due to its high 

level of risk and moderate return.  

6.1. Comparison of the Performance of M-CABC 

with NSGAII  

In order to evaluate the performance of M-CABC 

algorithm to solve our model, a comparison has been 

made between it and another multi-objective meta-

heuristic algorithm, NSGAII. Since the actual optimal 

solutions (the optimal pare to frontier) of our problem 

have not been determined in advance, we analyze their 

performance based on 3 measures: running time, the 

number of reached pareto solutions, and the value of 

individual objective functions, instead of usual 

performance measure such as variance or other 

distance measures requiring exact solutions to be 

compared with those reached by the algorithms.  

Table 3) indicates the parameters set for 

performance comparison. Population numbers and the 

number of generations for both algorithms have been 

set equal in order to make the comparison as fair as 

possible. The other parameters of NSGAII have been 

determined based on the study of (Anagnostopoulos & 

Mamanis, 2011) and those of M-CABC was tuned 

according to (Kumar & Mishra, 2017). 

As it is observed M-CABC is able to reach solutions 

much faster than NSGAII; however the latter is 

capable of reaching more number of Pareto optimal 

solutions, i.e. 170 against 15. Nevertheless, we have 

tried to compare the performance of these algorithms 

based on their ability to reach the best value of 

objective functions. To do so, the algorithms were run 

10 times and were compared for their return and risk 

functions, respectively.  

 

Table 3- Parameters of M-CABC & NSGAII used to compare their performance 

Parameter M-CABC NSGAII 

Number of Population of each generation, Npop 200 200 

Number of generations (iterations) 100 100 

Pcrossover - 0.9 

Pmutation - 1/ Npop 

Number of Employed bees 50 - 

Number of Onlooker bees 50 - 

 

Algorithm Average time to reach solution (s) Average number of pareto solutions 

M-CABC 14.60 15.08 

NSGAII 84.52 170.54 

 

 

Figure 4-Comparison of M-CABC algorithm with NSGAII based on their achieved returns in 10 runs  
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Figure 4) indicates the results of comparison between 

performances of two algorithms based on their values 

of return function. As it can be observed M-CABC 

algorithm averagely, is able to reach portfolios with 

better rates of return. 

 

The similar results can be observed in Figure 5) 

indicating the average rates of risk of portfolios in 

Pareto frontier achieved by these two algorithms. M-

CABC also possesses a better performance in this 

aspect and obtains portfolios associating with lower 

levels of risk.  

 
 

 
Figure 5- Comparison of M-CABC algorithm with NSGAII based on their achieved risks in 10 runs 

 

 

7. Conclusion and Further Research 
In this paper a portfolio optimization problem has 

been introduced in which we were aimed to determine 

the best investment portfolio for a private investment 

company so as to minimize the risk of portfolio and 

simultaneously maximize the expected return of it. 

Therefore a bi-objective optimization model with 

different sets of constraints was developed. The 

constraints include common sets of constraints in 

portfolio optimization literature such as the number of 

assets limits as well as specific ones defined based on 

special considerations of the company. The first set of 

special constraints set limitation on the use of startup 

companies (high risk companies) in the portfolio. 

Another set of special constraints used to modify 

overall risk of the portfolio is about considering a 

lower limit on the use of zero risk assets in the 

portfolio. Due to the lack of data on private 

companies, a simulation based approach has been 

applied to estimate the return of companies and also 

the correlation among them. Then the estimation of 

return on equity of the companies has been used as 

their return. As the model is considered a NP-Hard 

problem, we use the Covariance-Based Artificial Bee 

Colony algorithm. The result of algorithm indicates the 

optimal portfolios contain both mature and startup 

companies due to the low risk of the former and high 

return of the latter. Also, a comparison has been made 

in order to pit the performance of the algorithm against 

another multi-objective meta-heuristic algorithm, 

NSGAII according to 3 performance index inclusing 

running time, the number of reached pareto-optimal 

solutions, and the values of objective functions. While 

M-CABC can perform faster relative to NSGAII, the 

latter find more pareto-optimal solutions, however the 

quality of the solutions reached by M-CABC is much 

higher than those of NSGAII. 

The future works can be conducted on determining 

optimal portfolios with higher degree of variety. Also, 

in this study we have assumed that the investor has a 

pre-determined amount of capital to invest. It is 

possible to relax the assumption this assumption and 

allow the investor to use debts in its investment 

process. This will increase the options of the investor 

and consequently the complexity of the solution space 

of the problem since the weights can take negative 

values. Furthermore, we can consider the amount of 

capital as a function of the return of portfolio. 
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