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ABSTRACT 
Enhanced indexing (EI) is a passive investment strategy that seeks to perform better than the benchmark 

index in the sense of higher return. The purpose of enhanced indexing is to determine optimal portfolios with the 

maximum excess mean return over the index return. The less efficient markets offer scope for enhanced indexing. 

The less (more) efficient the market is, the greater (lesser) is the chance of beating it. In this study, a two-step 

procedure is proposed for enhanced indexing of the Tehran Exchange Dividend and Price Index (TEDPIX). In the 

first step, a discrete Markov chain model is designed to filter stocks based on their high probability of gain over 

the benchmark index. In the second step, optimal weights are assigned to the filtered assets by maximizing the 

STARR ratio with MCVaR. The sample includes weekly data from March 2013 to March 2020. The data is 

divided into a 26-time frame, including 52 in-sample data and 12 out-of-sample data. The results of 26 window 

(containing a rolling data set of 52 weeks in- sample data & 12 weeks out-of-sample) show that not only the 

portfolio return positively correlated to the TEDPIX return and could track it entirely, but also it could exceed 

and enhance the portfolio tracking. More precisely, our model portfolio could grow 13.65 times while the 

TEDPIX grows just 6.5 times simultaneously. 
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1. Introduction 
In finance, the expression, index funds, identifies 

management strategies that have the objective of 

tracking the performance of a specific market index 

(the so-called benchmark), attempting to match, as 

much as possible, its returns. This investment strategy, 

usually called indexing or index tracking, is a passive 

form of fund management where the manager has a 

low degree of flexibility, and the fund is expected to 

reproduce the performance of the benchmark by 

adequately choosing a representative selection of 

securities. The index tracking problem aims at 

minimizing a function, called the tracking error, 

which measures how closely the portfolio mimics the 

performance of the benchmark. 

In contrast, the term enhanced indexing refers to 

an investment strategy that, while still attempting to 

track the market index, is specifically designed to find 

a portfolio that outperforms the benchmark. In other 

words, the manager of an enhanced index fund is 

trying to achieve a higher return than the benchmark 

but incurring a minimal additional risk, as measured 

by the tracking error. Riepe and Werner (1998) 

comment that “defining enhanced indexing is difficult 

because so many purveyors of enhanced index 

products describe their mission differently (Guastaroba 

et al., 2020). 

In practice, fund managers use several techniques 

to increase the return above that of their targeted 

index. Grossman and Algert (1998) and Riepe and 

Werner (1998) discuss the strategies. These strategies 

are classified into the following categories. 

1) Security selection. Most enhanced index fund 

managers use traditional fundamental and 

technical analysis to select stocks. This process 

is precisely the same as that of a typical active 

fund. 

2) Yield curve enhancement. Funds can obtain 

index exposure by purchasing futures and 

investing the cash portion of their portfolio in 

higher-yielding, fixed income securities. The 

alpha can be increased by taking on additional 

duration risk (moving up the yield curve) or 

taking on credit risk. The risks in this strategy 

come from unanticipated shifts in the yield 

curve, credit risk, and potentially overpaying 

for futures contracts at the time the manager 

needs to roll over the position. 

3) Equity market neutral. This index exposure is 

obtained by purchasing index futures. The 

alpha is provided by a market-neutral long-

short portfolio. The long-short part of the 

portfolio is typically managed using 

quantitative tools. 

4) Derivatives-based and leveraged strategies. 

These strategies combine a futures-based 

indexing strategy overlaid with an options 

portfolio. Derivatives also could be used to 

achieve a beta greater than 1. 

 

French (2008) reports that active management 

strategies do not perform better on average than the 

market. So, it is not surprising that, according to the 

Moody’s report (2017), almost one-third of all 

investments in the United States, or approximately $6 

trillion, are in index funds or other passive 

management strategies. 

In recent years, index funds and enhanced index 

funds have received more attention. While the best of 

the actively managed funds outperforms the market in 

any particular year, over the long-term, the majority of 

such funds do not (e.g., in the U.K. in 1998, only one-

quarter of actively managed funds outperformed their 

comparative index over a five-year period). Also, an 

actively managed fund that outperforms the market 

one year may fail to do so in subsequent years (e.g., in 

the U.K., many funds that performed well in 1992 had 

fallen to bottom quartile positions by 1998). Moreover, 

as stock markets (and so their indices) have 

historically risen in the long-term, it has become clear 

that reasonable returns can be obtained without 

incurring the additional risks associated with active 

management (Beasley, Meade, and Chang 2003). 

In order to study the situation of actively managed 

mutual funds in the Iran capital market, Eyvazlu et al. 

(2021) examined the average return of these funds for 

ten years. The comparison of the monthly average 

return of actively managed mutual funds with the 

monthly return of the Tehran Exchange Dividend and 

Price Index (TEDPIX) from March 2010 to early 

March 2009 shows that the TEDPIX in-sample period 

has outperformed the average of actively managed 

mutual funds’ return. The monthly average return of 

actively managed mutual funds during the mentioned 

period was equal to 2.66 percent, while the monthly 

average return of the TEDPIX during the same period 

was equal to 2.89 percent. Also, as shown in Figure 1, 
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the TEDPIX with a cumulative monthly return 

performance of 2.067 percent outperformed the 

average of actively managed mutual funds during the 

studied period. Note that during the same period, the 

average cumulative return of actively managed mutual 

funds was 1.601%. Thus, actively managed mutual 

funds, on average, had almost worse performance than 

the TEDPIX. Therefore, passive investment strategies 

such as index tracking, as well as enhanced indexing, 

can be considered as an alternative approach. 

Finally, considering the importance and undeniable 

role of index tracking and enhanced indexing in the 

prosperity of capital markets, the study and 

implementation of the recent approach are on the list 

of this research. The purpose of this study is to 

investigate a mathematical optimization model, which 

has a performance beyond the index by selecting a 

limited number of stocks of an index. So, for this study 

in the first step, a discrete Markov chain model has 

been designed to filter a few stocks based on their high 

probability of gain over the benchmark index. In phase 

two, optimal weights to the filtered assets have been 

assigned through maximizing the STARR ratio with 

MCVaR. 

 

 

Figure 1. Comparison of the average return of actively managed funds with the index return of the Tehran Stock 

Exchange during the period from the beginning of March 2011 to the beginning of March 2020. 

 

 

2. Literature review 
Recent researches show that enhanced index funds 

have received more attention. The Goel et al. (2018) 

paper can be referred to for the literature review. 

Ahmed and Nanda (2005) report the growth of the 

enhanced index funds over 20 years, where most of 

such funds target the S&P 500 index. Koshizuka et al. 

(2009) and Weng and Wang (2017) report the 

increasing popularity of the enhanced index funds in 

Tokyo and Chinese markets, respectively. The findings 

of Weng and Wang (2017) further suggest that passive 

index funds are more beneficial than the active funds 

in the Chinese market. 

Wu et al. (2007) use the goal programming 

approach for E.I. by setting the desired goal on 

portfolio excess mean return and the tracking error. 

Koshizuka et al. (2009) propose an optimization model 

using mean absolute deviation (MAD) and Semi MAD 

to find an index-plus-alpha portfolio1 among all those 

portfolios which are positively correlated to the index. 

Canakgoz and Beasley (2009) propose a bi-objective 

mixed linear E.I. model where the alpha of the 

portfolio is maximized, and the beta of the portfolio is 

minimized around unity. Li et al. (2011) formulate the 

bi-objective programming problem of maximizing the 

excess mean return and minimizing the downside 

deviation of order two from index return with 

transaction cost constraints. An immune-based multi-

objective optimization algorithm is employed to find a 

solution to the problem. Lejeune (2012) proposes to 
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maximize the excess mean return of the portfolio 

under the bound on the market risk quantified by the 

semi-deviation measure. He provides the game 

theoretical framework when the distribution is known 

to belong to the ellipsoidal distribution family. 

Guastaroba and Speranza (2012) form a mixed-integer 

linear program for I.T. by minimizing the absolute 

deviation between portfolio return and index return to 

track the index while imposing constraints on 

cardinality and transaction cost. They also extend this 

model to E.I. by tracking the index-plus-alpha 

portfolio. They find the solution for the I.T. problem 

under the kernel search framework. Filippi et al. 

(2016) apply a heuristic approach which combines the 

kernel search with the  -constraint method to solve the 

integer linear bi-objective programming problem of 

maximizing the excess mean return and minimizing 

the absolute deviation between returns of portfolio and 

index with real-life features. 

Bruni et al. (2015) propose a linear program for 

E.I. by maximizing excess mean return and impose a 

bound on the worst performance of portfolio return 

from the index. Paulo et al. (2016) propose an 

optimization model that creates a trade-off between the 

weighted sum of excess mean return and variance of 

the difference of returns of portfolio and index. They 

allow short-selling and hence obtain the close form 

solution for the optimal weights when the assets for 

investment are prior selected. Guastaroba et al. (2016) 

form a linear program optimizing the Omega ratio for 

E.I. with fixed and random targets. They also extend 

their models to incorporate real features like 

transaction cost and cardinality constraint and obtain a 

mixed-integer program. Later, in the same year, 

Guastaroba et al. (2016) optimize the Omega ratio 

under the risk-reward framework to propose a new 

optimization model for E.I. that uses the mixed CVaR. 

For the first time in Iran, Hanifi et al. (2009) raised 

the issue of index tracking. Using the genetic 

algorithm in three approaches of classical, enhanced, 

and multi-stage genetic algorithm and considering the 

number of stocks allowed in the portfolio in four 

modes of 5, 10, 15, and 20 stocks, they solved the 

index-tracking portfolio problem. Their results showed 

that the multi-stage genetic algorithm had the lowest 

tracking error, among all other approaches. Varsehee 

and Shams (2010) presented an innovative solution 

method to form an index tracking portfolio. 

Constraints used in the model included an integer limit 

on the number of stocks allowed in the portfolio, as 

well as an investment amount ceiling and floor. They 

divided the issue into two sub-issues: stock selection 

and optimal weight assignment. Their solution was 

based on a reduction in the study scope using the 

concept of robust correlation. Their sample contains 30 

T.S.E. listed stocks, and they solved the problem in a 

definite method. Nabizadeh et al. (2017), using two 

evolutionary genetic algorithms and differential 

evolution algorithm, investigated the performance of 

the three models presented in their research. After 

evaluating the results, they find that the model based 

on an undesirable beta, which has been solved by a 

differential evolution algorithm, is much more 

efficient. They solved the problem by considering the 

minimum number of stocks in the portfolio, regardless 

of transaction costs. Eyvazlu et al. (2017) also 

evaluated the use of co-integration and correlation in 

the formation of an index-based stock portfolio by 

examining the overall index and showed that due to 

the tracking error, the co-integration approach 

outperforms the correlation approach. On the other 

hand, based on portfolio returns, information ratio and, 

Sharp ratio, model performance in index-tracking is 

better than the enhanced indexing. Ansari et al. (2020) 

used a two-stage model based on integrated integer 

programming to minimize tracking error and maximize 

returns under tolerance values for tracking error. They 

used the index of 50 active stock exchange companies 

to show the efficiency of the proposed model. The 

research findings show that the proposed two-stage 

model is better than the one-stage model. 

 

3. Methodology 

3.1. Notations 

Similar to the study of Goel et al. (2018), Consider 

a portfolio   of  -assets   {       }, where    is 

a decision variable denoting the proportion of total 

budget to be allocated to the  th asset,        . Let 

the investment horizon be  . It is customary to 

partition   into an equal number of time points, say  , 

to observe the  th realization (a particular value), 

           , of each asset. Let     denote the  th 

realization of return of the  th asset with probability    

with mean value     ∑      
 
           . The  th 

realization of return for the portfolio   is   ( )  

 ∑      
 
   , with probability               . In this 

way, the return of the portfolio  , denoted by  ( ), is 
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finitely distributed {  ( )       ( )} with 

corresponding probability vector {          }. 

 

3.2. Tail risk measures 

Value-at-Risk (    ) measures the maximum 

possible loss at a confidence level   (   ), and it is 

defined as follow: 

 

(1) 

    (  ( ))     {         ( )( )

   (  ( )   )

  } 

where    ( )( ) is the distribution for the portfolio 

loss   ( ). If the portfolio returns are assumed to be 

normally distributed, then the portfolio optimization 

model minimizing      risk measure is a convex 

program and hence has a global solution (Linsmeier 

and Pearson 1996). 

 

Conditional Value-at-Risk (      ) is the mean of 

the following  -tail distribution of   ( ) described 

by Rockafellar and Uryasev (2002): 

 

(2) 

  (  ( )  )

  {

        (  ( ))

 (  ( ))( )   

   
       (  ( ))

 

 

The pioneering work of Rockafellar and Uryasev 

(2000) establishes that the minimization of      can 

be approximated by a linear program for the case of 

continuous distributions through sampling techniques, 

like, Monte-Carlo simulation. The      

     optimization problem is given as follows: 

 

(3) 
(     )             

 

(   )
∑    

 

   

 

                                     

                               ∑     

 

   

           

                          ∑    

 

   

    

                                              

 

where   {(       )   ∑      
         

         } is the set of all feasible portfolios with 

no short selling and the budget constraint,    

( ∑         
   )

 
        , are  , auxiliary 

variables, and    is the minimum threshold preset by 

an investor on the expected return from the portfolio. 

The (     ) model attempts to minimize the 

expected value of the left tail of the return distribution 

of the portfolio. Often, due to inaccurate estimation of 

this tail, the optimal portfolio from (     ) model 

fails to perform well in the actual investment period 

(or out-of-sample period). It is therefore desired to 

consider other parts of the return distribution for more 

informed decision making. The mixed      is a 

generalized version of       which extracts more 

information from the return distribution by including 

      for different values of   and aggregating them 

by attaching relative importance to each of them (Goel 

et al., 2018). 

 

3.3. Mixed Conditional Value-at-Risk 

Mixed      is a weighted sum of multiples      

risk measures at different confidence levels  . For   

distinct values   ,        , with        

    , the       is defined as follows (Goel et al. 

2018): 

 

(4) 

     (  ( ))          
(  ( ))

  

         
(  ( )) 

 

where     ,        , and ∑   
 
     . For 

    ,       
(  ( )) is the mean of the random 

variable   ( ). The set   is defined as follows: 

 

(5) 

  {  (       )        

       ∑   

 

   

  }  

 

All good properties of     , like coherent risk 

measure,     consistency, and linear mean-risk 

model, remain to preserve under       (Mansini et 

al. 2007). Similar to the      minimization problem, 
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minimizing      , with     (   ),           , 

and    , is a linear program and is given as follows 

(Goel et al. 2018): 

(6) 

(      )           
   

∑   (  

 

   

 
 

(    )
∑     

 

   

) 

                                         

                                     ∑     

 

   

    

               

                                                    

                                  

 

where     ( ∑         
 
   )

 
,        , 

       , are auxiliary variables. 

Mansini et al. (2007) describe the set of weights 

associated with the       as follows: 

 

(7

) 

   (    )(    ) (    ) ⁄  

  

 ((      )  (      ))(    ) (    ) ⁄   

 {       } 

  

 ((    )  (      ))(    ) (    ) ⁄  

 

with            . 

 

3.4. A two-step procedure for enhanced 

indexing 

In lines with the work of Goel et al. (2018), in step 

one, a strategy to filter some assets out of all assets 

constituting an index is designed. In step 2, an 

enhanced indexing optimization model is proposed to 

assign optimal weights to the filtered assets. 

 

3.4.1. Step-1: Discrete Markov chain model for 

filtration criterion 

Similar to the study of Goel et al. (2018), assets that 

have a high probability of yielding returns more 

significant than that of the index and their returns do 

not fall below a certain threshold are looked out. The 

difference of asset returns and index returns is 

modeled as a Markov chain with three states 

representing a good, neutral, and bad performance of 

an asset over the index. Next, the transition probability 

matrix and the stationary probability distribution are 

obtained for each asset. Based on the difference of the 

steady-state probabilities of good performance and bad 

performance of an asset over the index, a pre-

determined number of assets is selected that having the 

maximum value of this difference. 

Let   ,     denote the  th realization of returns of the 

index and the  th asset respectively, and         

  denote the predefined threshold levels. 

For each asset  ,        , an indicator process 

   {           } are defined as follows: 

 

(8) 
    {

                        

                                   

                                    
 

 

This is a homogeneous discrete-time Markov chain 

with state-space {     }. 

Using the historical data of  th asset returns and index 

returns, we construct the frequency transition matrix 

   [   
 ]

   
, where    

      {     }, denotes the 

transition frequency from state   to state  . 

 

(9) 
   (

   
    

    
 

   
    

    
 

   
    

    
 

) 

 

Determine the one-step transition probability matrix 

   [   
 ]

   
 as follows: 

 

(10) 
   (

   
    

    
 

   
    

    
 

   
    

    
 

) 

 

with entries 
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(11) 
   

  

{
 
 

 
    

 

∑    
  

   

 ∑     

 

   

 

 
           

 

 

The stationary distribution    (  
    

    
 ) by solving 

the linear system        . Since the Markov chain is 

finite, irreducible, and aperiodic, the stationary 

distribution vector    exists and is unique. 

The values   
    

  are arranged in the descending 

order, and the pre-decided top    of the assets is 

picked from it. 

The higher value of   
    

  indicates the  th asset has 

a high probability of performing better and a lower 

probability of performing worse than the index (Goel 

et al., 2018). 

 

3.4.2. Step-2:       ratio models for enhanced 

indexing 

      ratio uses the      measure to control 

extreme losses in the return distribution concerning the 

index. An optimization problem with       ratio is a 

linear program and hence tractable. This motivated us 

to concentrate on the       ratio for solving 

enhanced indexing problems (Martin et al. 2005). 

The       ratio at   confidence level is defined as 

follows: 

 

(12) 
      ( ( ))  

 ( ( ))   ( )

     (   ( ))
 

 

If the excess mean returns and the      of the 

corresponding loss series are of the same sign, then the 

      ratio is coherent in the sense that its numerator 

and denominator are coherent risk measures 

(RACHEV et al. 2008). 

Different variants of the       ratio can be 

formulated to take into account more information of 

worst cases by replacing the      measure by the 

      measure, two tail      measure, two tail 

      measure, and deviation       measure. 

       is one of these measures the uses       

instead of      and define the following: 

 

(13) 
       ( ( ))  

 ( ( ))   ( )

      (   ( ))
 

 

Since       (   ( )) is coherent and convex 

risk measure,       ( ( )), is a coherent and 

quasi-concave ratio. 

The optimization model for       ( ( )) at 

confidence level    (   )        , and weight 

vector    , defined as the following quasi-concave 

optimization problem: 

 

(14) 
(      )           

   

∑       ( ) 
   

∑         
(   ( )) 

   

 

                                         

                             ∑    

 

   

 

                                           

Applying transformation defined by Charnes and 

Cooper (1962), the following convex programming 

problem is received: 

 

(15) 
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(    ( ̃))

 

   

   

                             ∑ ̃   

 

   

 

                               ̃            

 

where   
 

∑         
(   ( )) 

   

   is a 

homogenizing variable,  ̃    . 

 

Using the auxiliary variables 

 ̃      ( (∑     ̃ 
 
      )   ̃   )    

             , the above model gets translated 

into the following linear program: 

 

(16) 
(      )           

   
∑   ̃    ( )
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                     ̃   (∑    ̃     
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3.5. Sample data 

In this study, the target index is the Tehran Exchange 

Dividend and Price Index (TEDPIX). Also, the sample 

includes weekly data from March 2013 to early March 

2020 of all assets constituting an index. 

 

3.6. Data analysis method 

In lines with the earlier work of Bruni et al. (2017), a 

rolling window scheme of 12 weeks period is 

followed. The in-sample periods (training) and the out-

of-sample periods (testing) are of 52 weeks and 12 

weeks, respectively. By sliding the in-sample period 

by 12 weeks, a total of 26 windows for the data set is 

gotten (Figure 2.) 

The weekly returns are calculated using     
         

     
                , where     and       

are respectively the closing prices of the  th asset in  th 

and (     )th week. 

According to the requirements of the research, 

          ;     ; {              }  

{                      } is set. The weight vector   

is also computed using Eq. (7). 

 

3.7. The research questions 

1) Is there any significant correlation between 

research model portfolios returns and the 

TEDPIX returns? 

2) Do the research model portfolios outperform 

the TEDPIX? 

 

 

 

IS(1)

IS(K)OS(2)

OS(1)

IS(2)

... OS(K-1)IS(K-1)

OS(K)
Figure 2. Window scheme for   periods;   ( )         indicates the in-sample data of  th window scheme, and 

  ( )         indicates the out-of-sample data of  th window scheme. 

 

4. Results 
Table 1 shows the performance of out-of-sample 

portfolios obtained from the enhanced indexing model 

in terms of correlation with the TEDPIX and excess 

mean return in 26 windows schemes. As the number of 

out-of-sample data is 12 weeks, in some observations, 

the correlation of the research model portfolios returns, 

and the TEDPIX returns is logically insignificant. 

More precisely, 23 out of 26 windows significantly 

correlated with 95% confidence level, and only two 

out of 26 windows have an insignificant correlation2. 

Also, 17 windows scheme correlations are significant 

at 99% confidence level. 

For further scrutiny, we have tested the above results 

overall to have a definite conclusion. So, we have 

computed the correlation test on the total data, which 

was 0.8894. Thus, the portfolio returns and TEDPIX 

returns were positively-correlated at 99% confidence 

level. 

Table 1 also indicates the average excess return of 

each. As presented, 19 out of 26 windows had positive 

excess returns, which shows the model has 

outperformed the TEDPIX in several times. 

In table 2, we have represented the total performance 

of portfolios obtained from the enhanced indexing 

model on both the correlation between portfolios and 

TEDPIX and average excess return. 
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Table 1. The out-of-sample performance of the portfolios 

obtained from the research model on the correlation 

between portfolios and the TEDPIX and excess mean 

returns in each window scheme. 

Window Correlation Excess mean return (%) 

1 ***27..0  27.0-  

2 **276.0  27.. 

3 ***270.0  2700 

4 ***27...  27.. 

5 **27.0.  27.. 

6 ***270.0  -2700 

7 ***2706.  270. 

8 ***27.0.  -272. 

9 **2766.  -270 

10 27. 27.. 

11 270.6 27.. 

12 *27..  2700 

13 ***27.6  2700 

14 **276..  2700 

15 **276.0  -2706 

16 ***27.2.  2720 

17 ***27000  -2700 

18 ***27000  2706 

19 ***27..0  2700 

20 ***27.0  272. 

21 ***27..0  270. 

22 ***27..6  -2726 

23 ***2700.  0700 

24 **27..6  272. 

25 ***27..0  27.0 

26 ***27.0.  070. 

The significance levels         ,            , 

          , are displayed by ***, **, * respectively in 

the statistical test of correlation. 

 

Table 2. The total out-of-sample performance of the 

portfolios obtained from the research model on the 

correlation between portfolios and the TEDPIX and 

excess mean returns. 

Correlation Excess mean return (%) 

0.8894*** 0.2459 

 

In order to test the second hypothesis, we used tail 

compare mean test on the out-sample in which 

          and          . Table 3 shows these 

results. As it turns out,    rejected at 90% 

significance. Hence, our model outperformed 

TEDPIX. 

 

Table 3. Hypothesis test on excess mean return. 

Mean 

portfolio 

return (%) 

Mean 

TEDPIX 

return (%) 

t-stat 
 
       

result 

0.8863 0.6404 3.203 0.06786 
   

rejected 

 

Figure 3 depicts the cumulative TEDPIX returns, and 

the out-of-sample portfolios returns result from the 

enhanced indexing model. As observed, the model 

portfolios returns outperformed the TEDPIX in the 

long term horizon. In the study period, the TEDPIX 

grew 6.5 times while our model portfolios could grow 

13.65 times. This result confirms the outperformance 

of our model. 

 

 
Figure 3. Cumulative returns of TEDPIX and the out-of-sample data portfolios were obtained from the research model for 

the twenty-six windows scheme. 
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5. Discussion and Conclusions 
In recent years investors have focused on passive 

financial instruments more, and this causes massive 

growth in such passive investment. In 2017, the 

amount invested in passive funds (index funds) was 

more than $15 trillion around the world, (which is 

about 19% of the total asset under management); while 

it was about $3 trillion in 2003 that shows a vast 

growing interest in index funds (world asset 

management report, 2019). Thus, in this paper, we 

have studied investing in passive management 

strategies (index oriented) as an investment method 

with a return above index return. 

The result shows that the research model was able 

to track the TEDPIX well, and through a 99% 

confidence, there was a most significant positive 

correlation. Also, the correlation of portfolio returns 

and TEDPIX return for all out-of-sample data was 

0.8894. On the other hand, we have tested the portfolio 

excess mean return, and the results show that the 

model outperforms the TEDPIX. Besides, in a long-

run horizon, the model returns have exceeded the 

TEDPIX returns. 
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Notes 

                                                             
1
 If    is the  th realization of the index then   (   ) is the 

 th realization of the index-plus-alpha portfolio. 
2
 We apply the two-sided    test on null hypothesis        

against the alternative hypothesis        . 


