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ABSTRACT 
Given the significant benefits of the Radial Basis Function (RBF) approach, here in this paper, we tried to 

exploit and adopt this method for the Fixed-Rate Mortgage (FRM) models. In the real world, a jump 

occurs due to an unknown reason and perhaps better reflects the evolution of real estate prices during 

bubbles and crises in the real estate markets. For the house price evolution, the jump-diffusion models are 

used which would lead to a Partial-Integro Differential Equation (PIDE) model. The main concentration 

is on the difficulty of projecting the pricing of FRM that deals with contracts in where the underlying 

stochastic factors are the house price and the interest rate. Utilizing the stochastic house-price and 

stochastic interest-rate models, we were able to develop a reliable mortgage valuation. The identified 

Partial-Integro Differential Equation (PIDE) from the FRM pricing model, solved by RBF considering the 

fact that a closed-form solution is usually unavailable. Further, to display the expected behavior of the 

contract, the possible applications of the suggested method applied to UK fixed-rate mortgages. Based on 

available resources, a set of economic parameters was determined for the mortgage to provide an instance 

to show the applicability of the proposed approach. 

 

Keywords: 
Fixed-Rate Mortgages, Jump-diffusion model, Partial-Integro Differential Equation, Stochastic interest 

rate, Radial Basis Function. 

 

Submit: 14/07/2021 Accept: 20/11/2021 

mailto:rahele.jalili@yahoo.com
mailto:a_neisy@atu.ac.ir
mailto:alrevahidi@yahoo.com


212 /   Multiquadratic-Radial Basis Functions Method for Mortgage valuation under ... 

Vol.8 / No.29 / Spring 2023 

1. Introduction 
A mortgage is a financial contract between two a 

borrower and a lender where the borrower uses a risky 

asset like a house (as collateral) and gains funds, 

usually from a bank or a financial institution. In the 

real world, a jump occurs due to an unknown reason 

and perhaps better reflects the evolution of real estate 

prices during bubbles and crises in the real estate 

markets. This study attempts to address the problem of 

estimating the pricing of a Fixed-Rate Mortgage 

(FRM) and deals with contracts in which the 

underlying stochastic factors are the house price and 

the interest rate. In this article, for the house price 

evolution, the jump-diffusion models are used. 

Utilizing the stochastic house-price and stochastic 

interest-rate models, we were able to develop a 

reliable mortgage valuation.  

The geometric Brownian motion was used by the 

Black and Scholes (1973) to construct a model of 

option pricing. The Black and Scholes model is 

recognized as a constant volatility model whereas the 

other model, which was offered in the financial 

mathematics literature in the late eighties, is generally 

known as modifications of the classical Black-Scholes 

model. Several suggestions exist in the literature to 

model the stochastic interest rate, such as Cox, 

Ingersoll and Ross (1985), and Vasicek (1977). The 

focus herein is taking into consideration the Cox, 

Ingersoll and Ross (1985) model for the stochastic 

interest rate. 

In the finance literature, several examples of the 

valuation of financial derivatives exist when the 

underlying assets follow a jump-diffusion process. In 

this study, we use the jump-diffusion models for the 

house price evolution, which would lead to a Partial-

Integro Differential Equation (PIDE) model. Thus, it is 

the main innovative point of the present paper. Here 

we suppose that the house price dynamics is governed 

by Merton (1976) and Kou (2002) jump-diffusion 

models and we assume a finite number of jumps 

following a Poisson process. In the case of fixed rate 

mortgages, we obtain a sequence of PIDE problems 

(one for each month) in order to get the value of the 

mortgage. Concerning the numerical methods for 

solving PIDE problems arising in finance, Chan and 

Hubbert (2014) demonstrated an efficient numerical 

solution of the European and American option prices 

using the jump-diffusion model and Radial Basis 

Function (RBF) interpolation techniques. Here, the 

identified PIDEs from the FRM pricing model will 

solve by RBF, too. 

The RBF interpolation scheme is a well-known 

meshless technique that has recently been used to 

solve PDEs in quantitative finance (for example, 

Fausshauer et al. (2004a), Fausshauer et al. (2004b), 

Hon and Mao (1999)). The new splitting scheme for 

solving a three-dimensional PDE was considered by 

Safaei et al. (2018), which divides each time step into 

fractional time steps with the more straightforward 

operator. In 1990, this numerical scheme was 

originally reported by Kansa (1990) for estimating 

partial derivatives using RBFs and resulted in a new 

method for solving partial differential equations. 

Considering RBFs' numerous advantages, this method 

has been implemented for various option pricing 

problems in Wilmott magazine (Pena, 2005) by using 

the Kansa (1990) collocation method. In Franke’s 

review paper (1982), Hardy’s multi quadratic (MQ) 

(1971) as one of the best interpolation methods is 

examined, and it is rated in terms of accuracy, speed, 

and ease of implementation. For instance, the MQ’s 

comparatively high accuracy has been made it favored 

choice in Pena (2005), Hon and Mao (1999), and 

Fausshauer et al. (2004b). Many different types of 

RBFs exist, and we can find more details in Liu 

(2003). In this case, MQ could possibly be one of the 

optimal algorithms for the scattered data interpolation 

problem. Given the significant benefits of the RBF 

approach (form MQ), here in this paper, we tried to 

exploit and adopt this method for the FRM models. 

This paper's remainder is formed as follows: Section 2 

describes the stochastic variables, provides a brief 

review of both the Merton and Kou jump-diffusion 

models, and derives the pricing models from 

estimating the FRM. Section 3 will look more closely 

at the RBF method and show how this technique may 

be used to discover the solution of PIDEs, which we 

then implement in the jump-diffusion model. In 

Section 4, the applicability of the proposed approach is 

indicated by a numerical example. Finally, in the fifth 

Section, the paper ends with conclusions and remarks.  

 

Literature Review 

Mortgage valuation models under jump-

diffusion processes 

To approximate the pricing of the Fixed-Rate 

Mortgage (FRM) we derive the pricing model, in 
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which the underlying stochastic factors are the house 

price, Ht, and the interest rate, 
tr . According to 

Merton (1976) and D’Halluin et al. (2005a), for 

example, the original form of the following Stochastic 

Differential Equation (SDE) with 
tH  for our market 

is considered 

𝑑𝐻𝑡 = (𝜇 − 𝛿)𝐻𝑡dt + 𝜎𝐻𝐻𝑡𝑑𝑍𝑡
𝐻 + 𝐻𝑡𝑑(∑ (𝑉𝑖 −

𝑁𝑡
𝑖=1

1))                         (1) 

 

Our focus herein is taking into account the other 

source of uncertainty in stochastic volatility models. 

So it is assumed the interest rate 
tr  at the time t  

generated from the Cox, Ingersoll and Ross (1985) 

(CIR) process. CIR process is describing 
tr  as a 

mean-reverting square root process as following 

 

𝑑𝑟𝑡 = 𝜅(𝜃 − 𝑟𝑡)𝑑𝑡 + 𝜎𝑟√𝑟𝑡𝑑𝑍𝑡
𝑟 .                       (2)   

 

Where the parameters indicate: 

The instantaneous rate of house-price appreciation, 

The house service flow, 

The volatility of house price, 

A standardized Wiener process of the house price, 

The 𝑒𝑥𝑝( 𝑌𝑖), 
iY  is an i.i.d. sequence of random 

variables, 

The mean reversion speed of 
tr , 

The long-run means of 
tr -process, 

The volatility of the 
tr -process, 

A standardized Wiener process of the interest rate, 

The Poisson process with the Poisson arrival intensity 


~

.   

Moreover, in Eq. (1) and (2) 𝑍𝑡
𝐻  and 𝑍𝑡

𝑟 are standard 

Wiener processes having contact correlation 𝜌𝐻𝑟 and 𝜂 

is a constant equal to 𝜂 = 𝐸[𝑒𝑥𝑝( 𝑌𝑖)] − 1 =

∫ (𝑒𝑣 − 1)𝑔(𝑣)𝑑𝑣
∞

0
 (Chan and Hubbert (2014)). The 

value of 𝜂 is determined by 𝑔(𝑣), the probability 

density function of 
iY . Since the jump size has some 

known probability density 𝑔(𝑣), then ∫ 𝑔(𝑣)
∞

0
𝑑𝑣 =

∫ 𝑔(𝑣)𝑑𝑣
∞

−∞
= 1 and we consider only the positive 

jumps such that 𝑔(𝑣) = 0 if 𝑣 < 0. Now, 𝑔(𝑣) may 

have any appropriate probability density function. For 

example, Merton’s model (1976) assumes 𝑔(𝑣) to be 

log-normal with 𝑌𝑖~𝑁(𝜇𝑗 , 𝜎𝑗
2) whereas Kou’s model 

(2002) assumes it to be double exponential 

                

{
1/√2𝜋𝜎𝑗 . 𝑒−(𝑣−𝜇𝑗)2/2𝜎𝑗

2

𝑓𝑜𝑟𝑡ℎ𝑒𝑀𝑒𝑟𝑡𝑜𝑛𝑚𝑜𝑑𝑒𝑙𝑜𝑟

𝑝. 𝛼1𝑒−𝛼1𝑣1𝑣≥0 + 𝑞. 𝛼2𝑒𝛼2𝑣1𝑣<0 𝑓𝑜𝑟𝑡ℎ𝑒𝐾𝑜𝑢𝑚𝑜𝑑𝑒𝑙,
     

                 (3) 

where p , q , 
1  and 

2  are positive constants 

such that 𝑝 + 𝑞 = 1 and 𝛼1 > 1. And also, the value 

for 𝜂 for Merton or Kou models is 

 

 𝜂 = 𝑒𝜇𝑗+(𝜎𝑗
2/2) − 1 or 𝜂 = (𝑝𝛼1/𝛼1 − 1) +

(𝑞𝛼2/𝛼2 + 1) − 1,  

 

respectively. Cont and Tankov (2004) explain more 

careful derivation of jump models with Lévy process 

and are not repeated here. Next section presents the 

model for the evolution of the price of the underlying 

assets when the underlying assets follow a jump-

diffusion model for the house price evolution. Then it 

will show the general form of the Partial-Integro 

Differential Equation (PIDE) to be solved for FRM 

valuation.  

 

PIDE Fixed-rate mortgage pricing 

formula under jump-diffusion processes 

For the house price evolution, the jump-diffusion 

models are used which would lead to a PIDE model. 

Then standard techniques based on Itô (1951) 

formulas for jump-diffusion process prove that the 

valuation of any asset 𝐹𝑡 = 𝐹(𝑡, 𝐻𝑡, 𝑟𝑡), whose value is 

a function only of house price 
tH , interest rate 

tr  

and time t , satisfies the following PIDE (see Cont and 

Tankov (2004), Calvo-Garrido and Vázquez (2015 ), 

for example): 

 

𝜕𝑡𝐹 +
1

2
𝜎𝐻

2𝐻2𝜕𝐻𝐻𝐹 + 𝜌𝜎𝐻𝜎𝑟𝐻√𝑟𝜕𝐻𝑟 +
1

2
𝜎𝑟

2𝑟𝜕𝑟𝑟𝐹 +

(𝑟 − 𝛿)𝐻𝜕𝐻𝐹 + 𝜅(𝜃 − 𝑟)𝜕𝑟𝐹 − 𝑟𝐹 + ∫ �̃�[𝐹(𝑡, 𝐻
+∞

0

𝑒𝑥𝑝( 𝑣), 𝑟) − 𝐹(𝑡, 𝐻, 𝑟) − 𝐻(𝑒𝑥𝑝( 𝑣) −

1)𝜕𝐻𝐹(𝑡, 𝐻, 𝑟)]𝑔(𝑣)𝑑𝑣 = 0. (4) 

 

In Eq. (4), partial derivatives are specified by sub-

indexes in the symbol   and henceforth, the 

dependence on t  is suppressed to simplify notation. 

To specify the distribution of jump sizes, we will 

assume either Merton model (1976) or Kou model 
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(2002) with the density Eq. (3), respectively. 

Therefore, the PIDE in Eq. (4) can be written in the 

form  

 

𝜕𝑡𝐹 +
1

2
𝜎𝐻

2𝐻2𝜕𝐻𝐻𝐹 + 𝜌𝜎𝐻𝜎𝑟𝐻√𝑟𝜕𝐻𝑟𝐹 +

1

2
𝜎𝑟

2𝑟𝜕𝑟𝑟𝐹 + (𝑟 − 𝛿 − �̃�𝜂)𝐻𝜕𝐻𝐹 + 𝜅(𝜃 − 𝑟)𝜕𝑟𝐹 −

(𝑟 + �̃�)𝐹 + �̃� ∫ 𝐹(𝑡, 𝐻 𝑒𝑥𝑝( 𝑣), 𝑟)
+∞

0
𝑔(𝑣)𝑑𝑣 = 0     

(5)  

 

that models jump diffusion in FRM pricing for 0 ≤

𝜏 ≤ 𝑇, 0 ≤ 𝐻 < ∞and 0 ≤ 𝑟 < ∞. More precisely, the 

functions defining the values of the mortgage 

𝑉(𝜏𝑚, 𝐻, 𝑟) to the lender during the month m  satisfy 

this PIDE as well. The remaining mortgage contract 

details, including the formulae for the monthly 

payment (MP), the outstanding balance following each 

payment 𝑃(𝑚 − 1), the usual monthly payment-date 

conditions, more details, and the boundary conditions 

may be found in Calvo-Garrido and Vázquez (2015), 

Sharp et al. (2008) and Azevedo-Pereira et al. (2002). 

The mortgage pricing problem starts from the value of 

the mortgage at maturity 𝑡 = 𝑇𝑀, which just before the 

last payment is the minimum of MP and the house 

value,  given by 𝑉(𝜏𝑀 = 0, 𝐻, 𝑟) = 𝑚𝑖𝑛( 𝑀𝑃, 𝐻). 

While at the other payment dates, it is provided by 

𝑉(𝜏𝑚 = 0, 𝐻, 𝑟) = 𝑚𝑖𝑛( 𝑉(𝜏𝑚+1 = 𝑇𝑚+1, 𝐻, 𝑟) +

𝑀𝑃, 𝐻) where 1 ≤ 𝑚 ≤ 𝑀 − 1 (Calvo-Garrido and 

Vázquez (2015)). 

There is an integral term in the Eq. (5) due to the 

presence of jumps which makes the PIDE more 

difficult to solve (Calvo-Garrido and Vázquez (2015)). 

Considering the FRM pricing PIDE based on jump 

diffusion model derived in Eq. (5), the numerical 

procedure is not straight forward. It means that Eq. (5) 

has no closed form solution and we still try to solve 

this equation using RBF method. Therefore, we need 

some variable transformation before we proceed to 

solve Eq. (5). In addition, the variables that appear in 

the integral term need to be changed. Let 𝑥 = 𝑙𝑛 𝐻, 

𝜏 = 𝑇 − 𝑡, and so that 𝐹(𝑡, 𝐻, 𝑟) = 𝑢(𝜏, 𝑥, 𝑟). And 

also we get 𝑭(𝒕, 𝑯𝒆𝒗, 𝒓) = 𝒖(𝝉, 𝒙 + 𝒚, 𝒓). Again, we 

change the variables in ∫ 𝑢(𝜏, 𝑥 + 𝑦, 𝑟)𝑓(𝑦)𝑑𝑦
+∞

−∞
 to 

the new integral term, 𝑧 = 𝑥 + 𝑦 → 𝑦 = 𝑧 − 𝑥 and 

𝑑𝑦 = 𝑑𝑧. The partial integro differential Eq. (5) in 

terms of the new transformed variables x , z  and   

will be 

 

𝑢𝜏 =
1

2
𝜎𝐻

2𝑢𝑥𝑥 +
1

2
𝜎𝑟

2𝑟𝑢𝑟𝑟 + 𝜎𝐻𝜎𝑟𝜌𝐻𝑟√𝑟𝑢𝑥𝑟 + (𝑟 −

𝛿 −
1

2
𝜎𝐻

2 − �̃�𝜂)𝑢𝑥 + 𝜅(𝜃 − 𝑟)𝑢𝑟 − (𝑟 + �̃�)𝑢 +

�̃� ∫ 𝑢(𝜏, 𝑧, 𝑟)𝑓(𝑧 − 𝑥)𝑑𝑧.
+∞

−∞
                            (6) 

 

In this part we have given the basic insight to the FRM 

pricing models. After finding the pricing models of 

FRM under the underlying asset the PIDE identifies, it 

is important to be able to find the solution of the 

pricing equation efficiently. Since the closed-form 

solution to the PIDE is primarily unavailable, they 

have to be solved numerically. Next part highlights the 

popular numerical method we wish to adopt to solve 

pricing problems.  

 

Methodology 
According to RBF’s advantages with the fast 

development in many research fields over the last two 

decades, this method has been explored by Pena 

(2005) and Pettersson et al. (2008). Now we are able 

to show the RBF as a well-known meshless technique 

for reconstructing an unknown function from scattered 

data and for the pricing of financial contracts by 

solving the PIDE. To do this, one must first obtain an 

RBF approximation of the initial value of the contract. 

Using an RBF interpolant with the RBF scheme, we 

approximate the unknown function 𝑢 = 𝑢(𝜏, 𝑥, 𝑟) to 

determine the interpolation points for the initial value. 

Then we derive a system for the linear constant 

coefficient ODE by requiring that the PIDE Eq. (6) be 

satisfied for the chosen RBF interpolation points. Due 

to the numerous RBF types, the readers can refer to 

Liu (2003). After selecting the interpolation points, we 

interpolant the unknown function u  by the radial 

basis function 𝜙(‖𝑥 − 𝑥𝑘 , 𝑟 − 𝑟𝑗‖) called RBFs and 

  is a basic function 

 

𝑢(𝜏, 𝑥, 𝑟) ≅ ∑ ∑ 𝑐𝑘𝑗
𝑁
𝑗=1 (𝜏)𝜙(‖𝑥 − 𝑥𝑘 , 𝑟 − 𝑟𝑗‖)𝑀

𝑘=1 , (7) 

 

where 𝑐𝑘𝑗 ∈ 𝑅 is estimated by the interpolation 

condition 𝑢(𝑥𝑘 , 𝑟𝑗) =: �̃�(𝑥𝑘 , 𝑟𝑗), and we use the 

Euclidean norm. In this research, to approximate the 

solution u , we utilize the RBF of form MQ which is a 

favored choice in the literature (Pena (2005), 

Fausshauer et al. (2004b), Hon and Mao (1999)), 

rather than the other popular basis functions. We get a 

linear equations system when we substitute the right-
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hand side of Eq. (7) into Eq. (6). So we gain the matrix 

form 𝐴𝑐 = 𝑢, where c  shows the vectors containing 

the unknown coefficients 𝑐 = [𝑐1, . . . , 𝑐𝑀𝑁]𝑇 , and 

𝐴𝑘 ′𝑗′𝑘𝑗 = 𝜙(‖𝑥𝑘 ′ − 𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖), 𝑘, 𝑘′ =

1, . . . , 𝑀, 𝑗, 𝑗′ = 1, . . . , 𝑁. Because the RBF does not 

depend on time, the time derivative of  u  is simply 

the time derivatives of the coefficients. Therefore, the 

partial derivatives of u  concerning time and other 

underlying assets have to be found, respectively 

𝜕�̃�(𝜏, 𝑥𝑘 ′ , 𝑟𝑗′)/𝑑𝜏 ≈ ∑ ∑ 𝑑𝑐𝑘𝑗(𝜏)/𝑑𝜏.

𝑁

𝑗=1

𝜙(‖𝑥𝑘 ′

𝑀

𝑘=1

− 𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖) 

𝜕�̃�(𝜏, 𝑥𝑘 ′ , 𝑟𝑗′)/𝜕𝑟 ≈ ∑ ∑ 𝑐𝑘𝑗(𝜏)

𝑁

𝑗=1

𝑀

𝑘=1

. 𝜕𝜙(‖𝑥𝑘 ′ − 𝑥𝑘 , 𝑟𝑗′

− 𝑟𝑗‖)/𝜕𝑟 

𝜕2�̃�(𝜏, 𝑥𝑘 ′ , 𝑟𝑗′)/𝜕𝑟2 ≈ ∑ ∑ 𝑐𝑘𝑗(𝜏)

𝑁

𝑗=1

. 𝜕2𝜙(‖𝑥𝑘 ′

𝑀

𝑘=1

− 𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖)/𝜕𝑟2 

𝜕�̃�(𝜏, 𝑥𝑘 ′ , 𝑟𝑗′)/𝜕𝑥 ≈ ∑ ∑ 𝑐𝑘𝑗(𝜏)

𝑁

𝑗=1

. 𝜕𝜙(‖𝑥𝑘 ′ − 𝑥𝑘 , 𝑟𝑗′

𝑀

𝑘=1

− 𝑟𝑗‖)/𝜕𝑥 

𝜕2�̃�(𝜏, 𝑥𝑘 ′ , 𝑟𝑗′)/𝜕𝑥2 ≈ ∑ ∑ 𝑐𝑘𝑗(𝜏). 𝜕2𝜙(‖𝑥𝑘 ′

𝑁

𝑗=1

𝑀

𝑘=1

− 𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖) /𝜕𝑥2 

𝜕2�̃�(𝜏, 𝑥𝑘 ′ , 𝑟𝑗′)/𝜕𝑥𝜕𝑟

≈ ∑ ∑ 𝑐𝑘𝑗(𝜏)

𝑁

𝑗=1

. 𝜕2𝜙(‖𝑥𝑘 ′

𝑀

𝑘=1

− 𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖)/𝜕𝑥𝜕𝑟. 

 

Besides, the first and second partial derivatives of   

for the MQ radial basis function should be obtained 

with respect to the underlying assets r , and x , 

respectively 

𝜙(‖𝑥𝑘 ′ − 𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖, 𝜍)

= √‖𝑥𝑘 ′ − 𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖
2

+ 𝜍2 

𝜕2𝜙(‖𝑥𝑘′ − 𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖, 𝜍)/𝜕𝑟2

= (√‖𝑥𝑘 ′ − 𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖
2

+ 𝜍2)−1 

−(𝑟𝑗′ − 𝑟𝑗)2(√‖𝑥𝑘 ′ − 𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖
2

+ 𝜍2)−3 

𝜕𝜙(‖𝑥𝑘 ′ − 𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖, 𝜍)/𝜕𝑥

= (𝑥𝑘 ′ − 𝑥𝑘). (√‖𝑥𝑘 ′ − 𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖
2

+ 𝜍2)−1 

𝜕2𝜙(‖𝑥𝑘′ − 𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖, 𝜍)/𝜕𝑥2

= (√‖𝑥𝑘 ′ − 𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖
2

+ 𝜍2)−1 

−(𝑥𝑘 ′ − 𝑥𝑘)2(√‖𝑥𝑘 ′ − 𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖
2

+ 𝜍2)−3 

𝜕2𝜙(‖𝑥𝑘′ − 𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖, 𝜍)/𝜕𝑥𝜕𝑟

= −(𝑥𝑘 ′ − 𝑥𝑘)(𝑟𝑗′

− 𝑟𝑗). (√‖𝑥𝑘 ′ − 𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖
2

+ 𝜍2)−3 

 

where   is the shape parameter with the huge impact 

on accuracy of interpolation matrix. Then we collocate 

and substitute of the expansions for �̃�(𝜏, 𝑥𝑘 ′ , 𝑟𝑗′), 

𝜕�̃�(𝜏, 𝑥𝑘 ′ , 𝑟𝑗′)/𝜕𝜏, 𝜕�̃�(𝜏, 𝑥𝑘 ′ , 𝑟𝑗′)/𝜕𝑟, 𝜕2�̃�(𝜏, 𝑥𝑘 ′ , 𝑟𝑗′)/

𝜕𝑟2, 𝜕�̃�(𝜏, 𝑥𝑘 ′ , 𝑟𝑗′)/𝜕𝑥, and 𝜕2�̃�(𝜏, 𝑥𝑘 ′ , 𝑟𝑗′)/𝜕𝑥2 into 

the FRM pricing model Eq. (6). 

 

Transforming the PIDE to a system of 

ODEs using Radial Basis Function 

Furthermore, for notational simplicity,  we use A, 𝐴𝑟, 

Arr, Ax, Axx, and 𝐴𝑥𝑟 as the 𝑁𝑀 × 𝑁𝑀 matrices of 

𝜙(‖𝑥𝑘 ′ − 𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖, 𝜍), 𝜕𝜙(‖𝑥𝑘 ′ − 𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖, 𝜍)/

𝜕𝑟 , 𝜕2𝜙(‖𝑥𝑘 ′ − 𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖, 𝜍)/𝜕𝑟2, 𝜕𝜙(‖𝑥𝑘 ′ −

𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖, 𝜍)/𝜕𝑥 , 𝜕2𝜙(‖𝑥𝑘 ′ − 𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖, 𝜍)/𝜕𝑥2, 

and 𝜕2𝜙(‖𝑥𝑘′ − 𝑥𝑘 , 𝑟𝑗′ − 𝑟𝑗‖, 𝜍)/𝜕𝑥𝜕𝑟 . They express 

the first and second partial derivatives of   for the 

MQ radial basis function in relation to the underlying 

assets r  and x , respectively. Using equally spacing 

method described in the literature (Hon and Mao 

(1999), Fausshauer et al. (2004a)), we determine an 

interval [𝑥𝑚𝑎𝑥𝑚𝑖𝑛 and [𝑟𝑚𝑎𝑥𝑚𝑖𝑛 for a given 𝑀 =

0,1, . .. and 𝑁 = 0,1, . .., we have 𝑥𝑘: = 𝑥𝑚𝑖𝑛 and 𝑟𝑗: =

𝑟𝑚𝑖𝑛 where 
max min /x x x M = −  and 𝛥𝑟 =

𝑟𝑚𝑖𝑛𝑚𝑎𝑥. So we arrive at the following system of 

ODEs (Chan and Hubbert (2014)) 

𝐴�̇� =
1

2
𝜎𝐻

2𝐴𝑥𝑥𝑐 +
1

2
𝜎𝑟

2𝑟𝐴𝑟𝑟𝑐 + 𝜎𝐻𝜎𝑟𝜌𝐻𝑟√𝑟𝐴𝑥𝑟𝑐 +

(𝑟 − 𝛿 −
1

2
𝜎𝐻

2 − �̃�𝜂)𝐴𝑥𝑐 + 𝜅(𝜃 − 𝑟)𝐴𝑟𝑐 − (𝑟 +

�̃�)𝐴𝑐 + �̃�(∫ 𝐴(𝑧)𝑓(𝑧 − 𝑥)𝑑𝑧)𝑐
+∞

−∞
            (8) 

where c  indicates 𝑑𝑐𝑘𝑗(𝜏)/𝑑𝜏. For truncating the 

integrals from an infinite to finite computational range 
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some researchers have provided different numerical 

techniques, see Briani et al. (2007), D'Halluin et al. 

(2005). Here we use Briani et al. (2007) numerical 

technique for truncating the integral domain of the 

PIDE Eq. (8) in both the Merton (1976) and Kou 

(2002) models. Let 휀 > 0, for selecting [𝑧−𝜀 , 𝑧𝜀] for 

the set of points z  in Merton case is as follows 

 

𝑧𝜀 = √−2𝜎𝑗
2 𝑙𝑜𝑔(휀𝜎𝑗√2𝜋/2) + 𝜇𝑗 , ∀𝑧 ≥ 0 

 

𝑧−𝜀 = −𝑧𝜀 , ∀𝑧 < 0, 

 

and in Kou model we have  

 

𝑧𝜀 = 𝑙𝑜𝑔( 휀/𝑝)/(1 − 𝛼1), ∀𝑧 ≥ 0 

 

𝑧−𝜀 = − 𝑙𝑜𝑔( 휀/𝑞)/(1 − 𝛼2), ∀𝑧 < 0. 

 

therefore transform Eq. (8) into 

 

𝐴�̇� =
1

2
𝜎𝐻

2𝐴𝑥𝑥𝑐 +
1

2
𝜎𝑟

2𝑟𝐴𝑟𝑟𝑐 + 𝜎𝐻𝜎𝑟𝜌𝐻𝑟√𝑟𝐴𝑥𝑟𝑐 +

(𝑟 − 𝛿 −
1

2
𝜎𝐻

2 − �̃�𝜂)𝐴𝑥𝑐 + 𝜅(𝜃 − 𝑟)𝐴𝑟𝑐 − (𝑟 +

�̃�)𝐴𝑐 + �̃�(∫ 𝐴(𝑧)𝑓(𝑧 − 𝑥)𝑑𝑧
𝑧𝜀

𝑧−𝜀
)𝑐             (9) 

 

For the matrix of the integrals evolution in Eq. (9), the 

MATLAB is used (Shampine (2008)). Then, the 

integrals in Eq. (9) can be approximated by 

 

∫ 𝑨(𝒛)𝒇(𝒛 − 𝒙)𝒅𝒛
𝒛𝜺

𝒛−𝜺
≈ 𝑰                              (10) 

 

We substitute the Eq. (10) into Eq. (9), which leads the 

new approximate equation 

 

𝐴�̇� =
1

2
𝜎𝐻

2𝐴𝑥𝑥𝑐 +
1

2
𝜎𝑟

2𝑟𝐴𝑟𝑟𝑐 + 𝜎𝐻𝜎𝑟𝜌𝐻𝑟√𝑟𝐴𝑥𝑟𝑐 +

(𝑟 − 𝛿 −
1

2
𝜎𝐻

2 − �̃�𝜂)𝐴𝑥𝑐 + 𝜅(𝜃 − 𝑟)𝐴𝑟𝑐 − (𝑟 +

�̃�)𝐴𝑐 + �̃�𝐼𝑐           (11) 

 

The Eq. (11) can be written as follow (Fausshauer et 

al. (2007))  

�̇� = (
𝟏

𝟐
𝝈𝑯

𝟐 𝑨𝒙𝒙 +
𝟏

𝟐
𝝈𝒓

𝟐𝒓𝑨𝒓𝒓 + 𝝈𝑯𝝈𝒓𝝆𝑯𝒓√𝒓𝑨𝒙𝒓 + (𝒓

− 𝜹 −
𝟏

𝟐
𝝈𝑯

𝟐 − �̃�𝜼)𝑨𝒙 + 𝜿(𝜽

− 𝒓)𝑨𝒓 − (𝒓 + �̃�)𝑨 + �̃�𝑰 )𝑨−𝟏𝒄 

Moreover, 

�̇� = 𝜴𝒄,                                                                (12) 

 

where 𝛺 can also expressed as 

𝛺 = (
1

2
𝜎𝐻

2𝐴𝑥𝑥 +
1

2
𝜎𝑟

2𝑟𝐴𝑟𝑟 + 𝜎𝐻𝜎𝑟𝜌𝐻𝑟√𝑟𝐴𝑥𝑟 + (𝑟

− 𝛿 −
1

2
𝜎𝐻

2 − �̃�𝜂)𝐴𝑥 + 𝜅(𝜃

− 𝑟)𝐴𝑟 − (𝑟 + �̃�)𝐴 + �̃�𝐼 )𝐴−1 

 

We derived the RBF-based method for our pricing 

models of FRM under the underlying asset from what 

has already been obtained. Now, we will employ the 

numerical method for solving the ODE in Eq. (12). 

The coefficient vector c  in the mentioned equations 

can be defined later with our preferred time integration 

scheme, RK4 method which is of fourth order. Here, 

no prior knowledge of RK4 scheme is required. The 

next part explains results that illustrate the proposed 

numerical technique's performance for the mortgage to 

show this contract's expected behavior. In the 

following numerical example, all of our numerical 

simulations will be performed using MATLAB. 

 

Results 

This section presents a set of parameters which is 

needed to be specified to obtain the solution to the 

FRM valuation problem. Following details are 

presented of the contract parameters, which are fixed: 

𝜎𝑟 = 7%, 𝜎𝐻 = 10%, 𝜃 = 10%, 𝜅 = 25%, 𝛿 =

7.5%, 𝜌 = 0, 𝑟0 = 8%, �̃� = 0.1, 𝜇𝑗 = −0.1, 𝜎𝑗 =

0.45, 𝑝 = 0.3445, 𝛼1 = 3.0465, 𝛼2 = 3.0775. 

Mortgage contract parameters are: 𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =

100,000€, 𝑇 = 300 months, 𝑐0 = 10%. Therefore, 

the results from the RBF method to price FRM models 

could be found. A basic set of parameters have been 

chosen by parameters reported in the literature (see 

Sharp et al. (2008), Azevedo-Pereira et al. (2002) and 

Kau et al. (1995), for example). Finding the FRM 

valuation problem and illustrating all required 

computations are the main reasons to specify such 

parameters. Moreover, some parameters and spatial 

discretization are collected whose values are needed 

regarding the numerical methods employed to solve 

the problem: 𝐻∞ = 200,000€, 𝑟∞ = 40%, 𝛥𝑟 = 0.1, 

Time steps per month is 30. We utilize the numerical 

scheme which is proposed in Briani et al. (2007) and 

we find out a finite computational range for our global 

integral of the PIDE. Moreover, in terms of meshless 

interpolation methods, we use MQ as a basis function. 
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Figure 1 illustrates the values of the mortgage 

taking into account jumps for the house value. In 

Figure 1 we consider Merton jump-diffusion model for 

house price dynamics. As expected, in the presence of 

jumps the value of the contract is lower than without 

jumps. Note that the presence of jumps increases 

uncertainty in the house price, thus depreciating the 

mortgage price. We took into account the fixed 

parameters of the model as mentioned above.  

Besides, we are going to present a figure which 

represents the price changes of the mortgage values 

versus house price changes in Merton model in 

different maturity times.  

Figure 2 displays the FRM price functions taking 

into account jumps for the house value corresponding 

to the set of benchmark parameters when the loan term 

is 25 years, for the various values of T.  

Hence, the numerical results emphasize that the 

RBF method can be used efficiently for the valuation 

of a FRM using the jump-diffusion model. Then the 

contract price decreases when we suppose jump-

diffusion dynamics for the house value. 

 

 
Figure 1. RBF approximation for the mortgage values under Merton jump-diffusion model for 5%r = . Computions are 

based on the benchmark parameters, which are fixed and are taken from the literature mentioned above. 
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Figure 2. RBF approximation for the mortgage values under Merton jump-diffusion model for benchmark parameters 

and the various values of T. 

 

 

Discussion and Conclusions 
Given the numerous advantages of RBF, this method 

has been implemented for the valuation of a FRM 

using the jump-diffusion model. Mortgage valuation 

models based on stochastic house-price and interest-

rate models were derived and where the house value is 

supposed to be driven by a jump-diffusion process. In 

reality, a jump occurs due to an unknown reason and 

perhaps better reflects the evolution of actual state 

prices in the financial crisis set in many countries. 

Hence, the assumption of jump-diffusion models 

instead of pure diffusion ones (GBM process) seems 

more reasonable. More precisely, we assumed that the 

jumps follow Merton (1976) and Kou (2002) models. 

We utilize the numerical scheme which is proposed in 

Briani et al. (2007) and we find out a finite 

computational range for our global integral of the 

PIDE. Moreover, in terms of meshless interpolation 

methods, we use MQ as a basis function. Finally, 

based on ODEs gained, we design the RK4 which is of 

fourth order. A basic set of economic parameters, 

based on literature, was specified for the mortgage as 

an example to demonstrate the potential application of 

the proposed approach. Besides, for one of the jump-

diffusion models in the house price, we demonstrate 

some numerical results to illustrate the behavior of the 

methods. Finally, we include figure which represent 

the price changes of the mortgage values versus house 

price changes in Merton model. Also, we show the 

FRM price functions taking into account jumps for the 

house value which has been illustrated for different 

maturity times. In particular, if we suppose jump-

diffusion dynamics for the house value then the 

contract price decreases, as expected. 

Taking into account the interest rate, in this work, 

we include a figure for a fixed interest rate while it can 

be illustrated by many different ones. In terms of 

meshless interpolation methods, our method can be 

easily extended to other basic functions rather than 

MQ such as cubic spline. Given the fact that the 

information on financial market data is incomplete, as 

future work, the authors may aim to use an artificial 

neural network for estimating the parameters of the 

model. 
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