International Journal of Finance and Managerial Accounting, Vol.10, No.37, Spring 2025

Comparative Comparison of the Efficiency of Hybrid Model of an Agent-based & Recursive Neural Network in Automating Algorithmic Trading Strategies in Global Financial Markets

Mohammad Hossein Poostforoush

Ph.D. Student in Information Technology Management, Department of Management, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran. Email: m.poustfroush@gmail.com

Amirhassan Monajemi Senior Lecturer, School of Computing, National University of Singapore, 117417, Singapore. (Corresponding Author) Email: amir@comp.nus.edu.sg

Saeed Daei-Karimzadeh

Associate Professor of Economics, Department of Economics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran. Email: saeedkarimzade@yahoo.com

Saeed Samadi

Associate Professor of Economics, Department of Economics, Faculty of Administrative Science and Economics, University of Isfahan, Iran. Email: s.samadi@ase.ui.ac.ir

Submit: 15/04/2023 Accept: 11/09/2023

ABSTRACT

The purpose of this study is to investigate and compare the efficiency of using a hybrid model of an agent-based and recursive neural network to automate algorithmic trading strategies in global financial markets and the Tehran Stock Exchange. The model consists of two groups of agents, including traditional agents and intelligent agents. The group of traditional agents is divided into three categories: liquidity providers, liquidity consumers, and noise traders. Historical data was used to predict stock prices in the intelligent agent group, and model simulations were used to generate trading signals and update the limited order book.

To extract the historical data, information from the financial markets of New York, Frankfurt, and Tokyo from 2013 to 2020 AD and the Tehran Stock Exchange from 1392 to 1399 Persian calendar was extracted from the official websites of these markets.

To compare the efficiency of the model, autocorrelation and Hurst exponent tests were performed on the time series of the model price and the time series of the closing price of the historical data of the actual financial markets. The results of the autocorrelation and Hurst exponent analysis of the model and the historical financial market data were compared using the Mann-Whitney test. The results of the Mann-Whitney test show that the model can effectively predict the behavior of the actual financial markets.

Keywords: Algorithmic Trading, Agent-based Modeling, Recurrent Neural Network/

With Cooperation of Islamic Azad University – UAE Branch

1. Introduction

In this research, an attempt is made to make a comparative comparison of the efficiency of the combined model of recursive neural network and agent-based modeling in automating algorithmic trading strategies in regional and global financial markets and the Tehran Stock Exchange.

Financial markets are immensely complicated dynamic systems that incorporate the interactions of millions of individuals on a daily basis. Market participants vary immensely, both in terms of their trading objectives and in their beliefs on the assets they are trading. All of these participants compete with one another in an attempt to achieve their own personal objectives in the most efficient way possible. Traded assets may also be driven by latent factors, and agents must dynamically incorporate data into their trading decisions (Casgrain & Jaimungal, 2020).

Financial markets, through financial funds, allow funds to move from people who lack productive investment opportunities to people who have such opportunities. Financial markets are critical for producing an efficient allocation of capital (wealth, either financial or physical, that is employed to produce more wealth), which contributes to higher production and efficiency for the overall economy. In direct finance, borrowers borrow funds directly from financial markets by selling securities, and in indirect finance, a financial intermediary borrows funds from lender-savers and then uses these funds to make loans to borrower-spenders (Mishkin, 2007).

With the existence of financial markets, the lenders and borrowers are better off, as the lenders will benefit from the interest rates while the borrowers will increase their investment opportunities. Hence, financial markets play a crucial role in the economy as they are producing an efficient allocation of capital, which contributes to increased production and efficiency for the overall economy. Financial markets that are working efficiently improve the economic welfare of society (Ezzat, 2016).

Algorithmic trading is a computer program that takes and executes automated trading decisions in the stock market. Trading strategies play a vital role in algorithmic trading. The conventional wisdom is that the same trading strategy is not profitable for all stocks all the time. The selection of a trading strategy for the stock at a particular time instant is the major research problem in the stock market trading. An optimal dynamic trading strategy generated from the current pattern of the stock price trend can attempt to solve this problem. Reinforcement Learning can find this optimal dynamic trading strategy by interacting with the actual stock market as its environment. The representation of the state of the environment is crucial for performance (Chakole, Kolhe, Mahapurush, Yadav, & Kurhekar, 2021).

The study of algorithmic trading always starts with studying the optimal execution strategies. Instead of seeking speculative opportunities, optimal execution strategies focus on executing orders with minimized cost. From the perspective of individual investors, their orders would not significantly affect the market price, due to the relatively small volume of either buying or selling positions. However, orders from institutional investors are generally considered as the driving force of the market price, and generally lead to a gap (or in other words, execution cost) between the market price and the really captured price. The size of execution cost directly determines the profitability of an institutional investor (Liu, 2015).

The development of automated systems to perform intra day stock trading has gained a lot of popularity in recent years, as it allows non-expert users to become wealthy in the stock market without actively acting on it. Several machine learning algorithms have been proposed to do such a task, but a deeper study on reward-based classifiers performing a final decision of several reinforcements learning classifiers, according to ad-hoc combinations of decisions for specific markets has not been extensively explored so far. The research results support the hypothesis that this approach can tackle the uncertain and chaotic behavior of different stock markets through a flexible ensemble strategy. The strategy consists of the following components: some agents with different experiences in the market, diverse combinations of actions to be done by the trader, an ensemble strategy, done with different agreement thresholds, and multiple resolution data representing past price's behavior in a complementary fashion. Such properties could help design ad-hoc strategies to different markets and trading periods, with a high potential to be a recommended strategy to some different markets (Carta, Ferreira, Podda, Recupero, & Sanna, 2020).

Agent-based models allow researchers to model their ideas without engaging in mathematical complexities, and to perform experiments and analyses

on factors that interact in the environment. Formally, agent-based modeling is a computational method that enables a researcher to create, analyze, and experiment with models composed of agents who interact within an environment (Gilbert, 2008).

By reviewing the previous research, it is clear that in the methods used in these researches, historical data are often used as input of the agent-based model to simulate financial market strategies. The use of historical data to simulate financial market strategies has the limitation that the simulation of the agents' behavior is based on these data, and the agents do not have the opportunity to identify the real behavior of the market and to predict events that may affect market prices at any moment. In addition, the simulation of historical data in two-sided markets does not provide the opportunity to make real bids for the selling price of shares, to offer the selling price based on the longterm trend of price changes, and to fill the selling side of the dynamic order book in the market. The use of intelligent agents trained with recurrent neural networks can help to overcome this limitation in simulating the behavior of agents on financial markets.

In this research, an agent-based modeling structure and the recursive neural network has been used in the design of a hybrid model. The agents are divided into two groups: intelligent agents and traditional agents. The group of intelligent agents is trained using a recurrent neural network and using historical data of time series and predicts the stock price. This price prediction is used by the intelligent agents as input to an agent-based model to compare this price with the prices recorded in the limited order book, and based on this, they place orders in the order book. The group of traditional agents is divided into three categories: Liquidity Consumers, Liquidity Providers, and Noise Traders. Traditional agents simulate the behavior of these three groups on the basis of the defined algorithms and, based on this, place orders in the Limited Order Book. The model has been run and the results reported. The autocorrelation and Hurst exponent tests have been run on the price time series of the model and the closing price time series of selected data from selected financial markets, and the results of these two groups have been compared using the Mann-Whitney U test.

The model is designed and coded using Netlogo software and Python programming tools (TensorFlow).

2. Background and related work

Due to the advances in technology and the rapid growth of high-frequency trading (HFT), advanced financial markets have substantially eliminated human intermediation in the trading process and replaced it with automated electronic limit order books that have allowed the growth of trading algorithms as one of the main investment tools. Some of the trading algorithms generated imitate the behavior of humans in the trading process, and over the last few years, these trading algorithms have considerably improved their speed to match the incidence of bid and ask orders (Manahov, Hudson, & Urquhart, 2019).

Artificial financial markets are models for studying the link between individual investor behavior and financial market dynamics. They are often computational models of financial markets and are usually comprised of a number of heterogeneous and bounded rational agents, which interact through some trading mechanism, while possibly learning and evolving. These models are built for studying agents' behavior, price discovery mechanisms, the influence of market microstructure, or the reproduction of the stylized facts of real-world financial time-series (e.g., fat tails of return distributions and volatility clustering). A similar bottom-up approach has been utilized in agent-based computational economics (ACE) - the computational study of economies modeled as evolving systems of autonomous interacting agents (Tesfatsion, 2006). Since agentbased models can easily accommodate complex learning behavior, asymmetric information. heterogeneous preferences, and ad-hoc heuristics (Chan et al., 1999), such simulations are particularly suitable to test and generate various behavioral hypotheses (Lovric, 2011).

According to the different approaches for market modeling, previous studies can be roughly categorized into three types: traditional financial analysis, machine learning (ML) approaches, and deep learning (DL) approaches. In traditional financial analysis, mathematics is wildly adopted to recognize historical time series patterns and make predictions. The common models include the auto-regressive moving average (ARMA) model and the generalized autoregressive conditional heteroskedasticity (GARCH) model. ARMA model contains auto-regressive (AR) and moving average (MA). Its generalization, AR-Integrated MA (ARIMA), becomes a popular method

Vol.10 / No.37 / Spring 2025

for time-series analysis in economics. GARCH model is frequently used for asset pricing, risk management, and volatility forecasting. The machine learning approach models the high-frequency limit order book using a support vector machine (SVM) with handcrafted features and shows the effectiveness in real-world data. The predicting direction of stock market prices is done with random forests and shows that the model is robust in predicting the future direction of the stock movement. With the development of deep learning approaches, recurrent neural network (RNN) is specifically designed to extract temporal information from raw sequential data. RNN variations, such as long short-term memory (LSTM) and gated recurrent unit (GRU) networks, have been proposed to mitigate the gradient vanishing problem and achieve state-of-the-art results in a variety of sequential data prediction problems (Li, Zheng, & Zheng, 2019).

Algorithmic trading is the computerized execution of financial instruments following pre-specified rules and guidelines, and it is classified by Kissell (2013) as follows: 1. Arrival price algorithm that optimizes a trading path to balance the trade-off between cost and risk at a user-specified level of risk aversion; 2. Implementation shortfall algorithm, which is similar to the arrival price algorithm, but incorporates real-time adaptation, i.e. the trading path of the implementation shortfall algorithm is updated by real-time data on every intraday trade while that of the arrival price algorithm is determined before trading and does not change during an intraday trade; 3. Black box algorithm that searches for profitable opportunities and makes investment decisions based on market signals (e.g. asset prices and trading volume) (Ha & Zhang, 2020).

Agent-based models are a powerful new paradigm for describing complex socio-economic systems. A timely issue for such models is the empirical estimates of these models. Analysis of available data is ultimately limited, however, with respect to counterfactual questions, such as the response of financial markets to rarely occurring shocks or the effects of alternative market rules and regulations. Answering such questions inherently required models that incorporate causal premises, specifically, assumptions as to how trading behavior is shaped by environmental conditions. Theoretical models can support such inference, and these also represent an important resource from the finance research literature. Trading in markets can be formulated as a game, and game-theoretic equilibrium concepts can be employed to characterize behavior in markets by rational agents. However, modeling algorithmic trading entails accommodating complex information and fine-grained dynamics, which often renders game-theoretic reasoning analytically intractable (Wellman & Wah, 2016).

Agent-based modeling and simulation (ABMS) allow for a better understanding of how an aggregatelevel outcome (e.g., product sales) may emerge as a result of the complex nature of the diffusion process. Such understanding will help decision-makers learn why a phenomenon happens and how they can more than manage it. In this 'ground-up' approach, researchers will seek to learn the behavior of the entities that constitute the system. Recent advances in computing technology and the availability of granulated data allow for such understandings. For example, in order to stimulate consumers, modelers should be able to describe the behavior of a consumer with regard to the focus of the study. The researcher then builds the agent-based model that explains the system. Using this system, researchers are able to examine various scenarios and improve their forecasts. Researchers should begin with simpler agent decision rules, and as they gain a better understanding of the system, they can build more complex agents who are more adaptive and may change their decision rules over time (Nejad, 2016).

In order to use macroeconomic agent-based models for policy, need to reduce the complexity of the ABM simulation to a less complex, more computationally tractable system. In other words, surrogate models or meta-modeling approaches need to be developed, that allow approximating or 'emulating' the multi-dimensional nonlinear dynamics of the original system (van der Hoog, 2017).

In the financial forecasting literature, some studies used machine learning (ML) techniques to develop forecasting models, and technical analysis indicators have been used as inputs to these models to discover the hidden patterns and the relationships between them, in sequence, to forecast future price's movements and thus identify the best trading indicators. The study and analysis of the price time series using artificial intelligence (AI) techniques will

Vol. 10 / No. 37 / Spring 2025

potentially reduce the ambiguity associated with investment decision-making (Aloud, 2020).

A variety of artificial intelligence methods can be used within agents. The methods include logic programming, neural networks, advanced search techniques, distributed problem solving, and nonmonotonic reasoning. Neural Networks Neural networks are particularly well suited for prediction and pattern recognition tasks. In principle, neural networks do essentially the same thing as a statistical regression. In practice, some problems seem to be more naturally addressed using neural networks than statistical methods. These problems include learning in complicated environments with large numbers of potential inputs of unknown quality, learning in situations with high ongoing rates of change, and recognizing patterns in data amidst substantial amounts of noise (North & Macal, 2007).

3. Structure of the model 3.1. Hybrid model structure

In this research, two groups of agents are used to perform model simulations. The first group of agents are the intelligent agents trained by a recurrent neural network.

The second group is the traditional agents, which make decisions based on traditional models and conventional market approaches. This group is divided into three categories: liquidity consumers, liquidity providers, and noise traders.

3.2. Intelligent agents

The first step involves predicting stock prices using a recurrent neural network and historical time series data. The recurrent neural network is utilized to train intelligent agents. Subsequently, the intelligent agents' price prediction is used as simulation input for the agent-based model to generate trading signals (i.e., buy, sell, or hold) and update the limit order book. The recurrent neural network was implemented with two linear and Long Short-Term Memory (LSTM) models. In the linear model, a linear conversion is performed between the input and output of the model, and the model performs a set of independent predictions in successive time steps in which there is no interaction between the predictions in each time step.

Some studies, such as Nogales et al. (2002) and Jahandari et al. (2018), have used linear models for stock price forecasting.

LSTM is a special type of recurrent neural network that has been developed to solve the problems of these networks. A traditional recurrent neural network (if large enough) should theoretically be able to produce sequences of any complexity, but in practice, It can be seen that this network is incapable of storing information related to past inputs for the long term (Hochreiter, 2001).

This network consists of three gateways that control the data flow within it. These three gates are named forget gate, update gate (also known as the input gate), and output gate.

In addition to weakening the network's ability to model long-term structures, these "forgetfulness" causes these types of networks to be exposed to instability during sequence generation. The biggest feature of LSTM is the ability to learn long-term dependency that is not possible with recursive neural networks. To predict the next time step, it is necessary to update the values of the weights in the network, which requires preserving the information of the initial time steps. A recurrent neural network can only learn a limited number of short-term dependencies, but an network can learn these LSTM long-term dependencies correctly (Graves, 2013).

LSTM models have been used for stock price forecasting in some studies, such as Bao and Rao (2017).

The structure of a standard recurrent neural network compared to an LSTM network is shown in Figure 1.

Figure 1- RNN network structure (right) vs. LSTM network structure (left)

3.3. Traditional agents

Traditional agents use the Monte Carlo simulation method to generate a trading signal and update a limited order book. Agents are allowed to place limited orders or market orders and could cancel previously registered orders. These agents are classified into three groups in the market: liquidity consumers, liquidity providers, and noise traders.

3.3.1. Liquidity consumers

This group is a large group of traders who take decisions about trading based on beliefs or stock portfolios that have been Rebalance to their needs. In real financial markets, this group includes investment institutions such as pension funds, banks, insurance companies, and other types of investors. This group creates large orders that want to operate with the least impact on the market and costs. The group buys or sells large stock orders in one day to minimize the impact of price and transaction costs. The probability that this group of agents is buying or selling is determined by equal probability.

3.3.2. Liquidity providers

This group of market participants try to profit from the difference between the buy and sell price through the supply of liquidity on both sides of the bid price and the asking price from the order book and maintain an almost neutral position during the trading day.

3.3.3. Noise traders

This group represents all other strategies on the market and can be viewed as speculative traders. The noise agents randomly decide on whether to buy or sell in each period with equal probability. Once decided, they randomly choose to place a market or limit order or to cancel an existing order (Oesch, 2014).

3.4. Validation of the agent-based model

Sensitivity analysis tests are used to test the validity and reliability of the model. Sensitivity analysis is the study of the influence of output variables from input variables of a statistical model, in other words, a method for changing the inputs of a statistical model in an organized (systematic) way to predict the effects of these changes on the output of the model. That is, how changes in independent variables in a given range can affect dependent variables (Saltelli et al., 2008).

4. Methodology

In this research, an agent-based model was developed in the first step. A sensitivity analysis test was used to test the validity and reliability of the model. Then, the model was run, and the price time series output of the model was stored. The autocorrelation and Hurst analysis tests were run on the price time series of the model and the results were reported. The autocorrelation analysis test was performed to calculate the degree of similarity between the model price time series and a lagged version of itself over successive time intervals. The Hurst exponent test measured the long-term memory of the price time series.

In the second step, information from 25 companies from the New York, Frankfurt, Tokyo, and Tehran stock exchanges were selected by data filtering method, which was extracted from the official websites of these exchanges, has been used. The data selected companies for New York, Frankfurt, and Tokyo is from 2013 to 2020 AD, and the Tehran Stock Exchange is from 1392 to 1399 Persian calendar (from March 2013 to March 2021 AD) that these companies have been most active in the field of buying and selling shares during the mentioned period. The autocorrelation and Hurst analysis tests were

performed on the price time series of these data, and the results were reported.

In the third step, to measure the ability of the model to simulate the actual financial markets, the Mann-Whitney test was used to compare the results of the autocorrelation test and Hurst's exponent for the model and the time series of the aforementioned financial markets.

The sensitivity analysis test, autocorrelation test, and Hurst's exponent test were performed by coding in Python software, and the necessary graphs were extracted. The Mann-Whitney U test was performed using SPSS software.

4.1. Development of the agent-based model

Netlogo software has been used to develop the agentbased model. Two types of agents have been used in this model. Since it is impossible to simulate two worlds simultaneously in the Netlogo software environment, other software features must be used to simulate the intelligent agents. To do this and to train the intelligent agents, Python software has been used. To create a link between these two software environments, the features of the Python extension are used in the Netlogo software environment. This extension makes it possible to call the Python software in the Netlogo software environment. The model is coded in the Netlogo software environment using the Python extension and using the TensorFlow tools in the Python software environment. In the user interface of the Netlogo software, the possibility of initial settings and initialization of the model parameters is embedded for the users.

4.2. Intelligent and traditional agents

In the user interface of the Netlogo software, the option of selecting one of these two linear models and LSTM to choose how to train intelligent agents for users is embedded. The training of intelligent agents is performed using historical time series data. This price prediction is used as input to the agent-based model by the intelligent agents to compare this predicted price with the prices recorded in the limited order book and make a decision to place an order in the order book. Traditional agents make decisions and place orders based on the algorithms determined for each of the three categories of liquidity consumers, liquidity providers, and noise traders.

4.3. Initialize free parameters of the model

The initial values of the free parameters of the model are given in the Table 1. Using this set of parameters, the ability of the model to reproduce various statistical features is investigated.

If the free parameters of the model are chosen too far from the default values, much larger jumps and long periods where the price doesn't change at all can result.

Market parameters	Setting
Initial Price	100
Initial Spread	0.05
Tick Size	0.01
Agent group	Action probability
δ _c	0.10
δ _p	0.15
δ_n	0.55
δ _t	0.20
Liquidity Consumer parameters	Setting
h _{min}	1
h _{max}	100000
Liquidity Provider parameters	Setting
V _{min}	1
V _{max}	200000
v ⁻	1
ω	50

Table 1. Standard setting for free parameters

216 / Comparative Comparison of the Efficiency of Hybrid Model of an Agent-based ...

Market parameters	Setting					
Noise Trader parameters	Setting					
Order direction	Probability					
buy or sell	0.5					
Event Type	Probability					
submit a market order	$\lambda_m = 0.03$					
submit a limit order	$\lambda_l = 0.54$					
cancel a limit order	$\lambda_c = 0.43$					
Limit Order Type	Probability					
crossing limit order	$\lambda_{crs} = 0.0032$					
inside-spread limit order	$\lambda_{inspr} = 0.0978$					
spread limit order	$\lambda_{spr} = 0.1726$					
off-spread limit order	$\lambda_{offspr} = 0.7264$					
Order Size Type	Parameters of Log-normal Distribution					
market order size	$\mu_{mo} = 7$ $\sigma_{mo} = 0.1$					
limit order size	$\mu_{lo} = 8 \qquad \sigma_{lo} = 0.7$					
Limit Price Type	Parameters of Power-law Distribution					
off-spread relative price	$xmin_{offspr} = 0.05 \beta_{offspr} = 2.72$					

4.4. Implementation of sensitivity analysis test

the groups of traders and the range of initialization are given in Table 2.

In this model, 20 input parameters and four output parameters are considered. The parameters related to

Table 2. Input parameter ranges for global sensitivity analysis									
Parameter	Symbol	Setting							
Probability of Liquidity Providers acting	δ_p	[0.05, 0.95]							
Probability of Liquidity Consumers acting	δ_c	[0.05, 0.95]							
Probability of Noise Traders acting	δ_n	[0.05, 0.95]							
Probability of Trained Traders acting	δ_t	[0.05, 0.95]							
Liquidity Providers parameters									
Max order volume	v _{max}	$[10^3, 10^6]$							
Rolling mean period	ω	[10 , 10 ³]							
Liquidity Consumers parameters		[1, 100]							
Max order volume	h _{max}	$[10^3, 10^6]$							
Noise Traders parameters									
Market order probability	λ_m	[0,1]							
Limit order probability	λ_l	[0,1]							
Cancel order probability	λ_c	[0,1]							
Market order size	μ_{mo}	[2,10]							
Market order size	σ_{mo}	[0,1]							
Limit order size	μ_{lo}	[2,10]							
Limit order size	σ_{lo}	[0,1]							
Off-spread relative price	xmin _{offspr}	[0,1]							
Off-spread relative price	β_{offspr}	[0,1]							
Crossing limit order	λ_{crs}	[0,1]							
Inside-spread limit order	λ_{inspr}	[0,1]							
Spread limit order	λ_{spr}	[0,1]							
Off-spread limit order	λ_{offspr}	[0,1]							

Table 2. I	nput i	parameter	ranges	for glob	al sensitivity	analysis
	mput	purumeter	runges	IOI SION	ui sensiti ity	anarysis

The output parameters of the sensitivity analysis are: Hurst's exponent of volatility (H), Median autocorrelations of mid-price returns (R(m)), Mean first lag autocorrelation term of the order-sign series (R(o)) and Concave Price Impact (β) (McGroarty, Booth, Gerding, & Chinthalapati, 2019).

As the model is stochastic (agents' actions are defined over probability distributions), there is inherent uncertainty in the range of outputs, even for fixed input parameters (Andersson & Britton, 2012).

4.5. Autocorrelation test

Autocorrelation is a mathematical representation of the degree of similarity between a given time series and a lagged version of itself over successive time intervals. It measures how the lagged version of the value of a variable is related to the original version of it in a time series.

The value of autocorrelation ranges from -1 to 1. A value between -1 and 0 represents negative autocorrelation. A value between 0 and 1 represents positive autocorrelation.

The analysis of autocorrelation helps to find repeating periodic patterns and gives information about the trend of a set of historical data, which can be used as a tool for technical analysis in the capital markets. A technical analyst can learn how the stock price of a particular day is affected by those of previous days through autocorrelation. Thus, he can estimate how the price will move in the future. If the price of a stock with strong positive autocorrelation has been increasing for several days, the analyst can reasonably estimate the future price will continue to move upward in the recent future days. The autocorrelation analysis only provides information about short-term trends. Therefore, it can only be applied to support trades with short holding periods (Broersen, 2006).

4.6. Hurst exponent test

The Hurst exponent is used as a measure of long-term memory of time series. It relates to the autocorrelations of the time series and the rate at which these decrease as the lag.

A variety of techniques exist for estimating the Hurst exponent. To estimate the Hurst exponent, one must regress to the rescaled range on the time span of observations. To do this, a time series of full length is divided into a number of shorter time series, and the rescaled range is calculated for each of the smaller time series.

The Hurst exponent fluctuates between zero and one. When the Hurst exponent is greater than 0.5, the data is exhibiting a strong long-term trend, and when H is less than 0.5, a trend reversal is more likely.

4.6.1. Trending: If the Hurst value range is between 0.5 < H < 1 indicates persistence in time series. The higher the value of the Hurst exponent more the trendiness of the market structure. For values close to 1 the series is persistent.

4.6.2. Mean Reverting: If the Hurst value range is between 0 < H < 0.5 indicate anti-persistence in the time series. The lower the value of the Hurst exponent more the mean-reverting behavior (trend reversal). For values close to 0, the series is anti-persistent.

4.6.3. Geometrical Brownian Motion: It explains the random walk with the unpredictability of the time series. If the Hurst Exponent value is H = 0.5, then the time series is expected to move in a random walk (Qian & Rasheed, 2004).

Geometric Brownian Motion is widely used to model stock prices in finance (Shehzad, Anwar, & Razzaq, 2023).

The Hurst exponent can be used in trend trading investment strategies. An investor would be looking for stocks that show strong persistence. These stocks would have an H greater than 0.5. An H less than 0.5 could be paired with technical indicators to spot price reversals (Marton & Cakir, 2022).

4.7. Measurement of the model's ability to simulate factual financial markets

To measure the ability of the model to simulate the factual financial markets, the Mann-Whitney test was used. The Mann-Whitney U Test is a non-parametric statistical test used to compare two samples or groups and assesses whether two sampled groups are likely to derive from the same population, and essentially asks; do these two populations have the same shape of their data? In other words, we want evidence as to whether the groups are drawn from populations with different levels of a variable of interest.

The hypotheses in a Mann-Whitney U Test are: The null hypothesis (H0) is that the two populations

are equal. The alternative hypothesis (H1) is that the two populations are not equal (MacFarland & Yates, 2016).

Man-Whitney tests were run to compare the median of the autocorrelation and Hurst exponent data of the model and the autocorrelation and Hurst exponent data for each of the selected stocks in financial markets.

5. Results

δ_p δ_c δ_n δ_t Vmax ω h_{max} λ_m λ_l λ_c μ_{mo} σ_{mo} μ_{lo} σ_{lo} xmin_{offspr} β_{offspr} λ_{crs} λ_{inspr} λ_{spr} λ_{offspr} н R(m) R(0) β

5.1. The execution of the model

Figure 2. Heatmap of the global variance sensitivity

The global variance sensitivities clearly identify the probabilities of each of the agent groups acting as the most important input parameters for all outputs. This provides the optimal set of parameters. This is consistent with the findings of Booth (2016).

The autocorrelation and Hurst analysis tests were run on the trade price time series of the model. The results are shown in Table 3.

According to the initialization of the model parameters

based on Table 1, the model has been executed with

the initial data parameters for 2000 ticks to simulate

2000 days in the financial markets (almost similar to the data on the factual financial markets used in this

research) and the price time series output of the model

was saved. The global variance sensitivity analysis that is initialized with parameters based on Table 2 has

been executed. The output of the sensitivity analysis

test is shown in Figure 2.

The price series graph of the model is shown in Figure 3.1 and the autocorrelation and Hurst exponent graphs of the price time series of the model are shown in Figures 3.2.

	Stats	Min.	Q1	Median	Mean	Q3	Max.
Agent-based model	AC trade price	-0.2462	-0.2048	0.0283	0.1145	0.3110	0.9929
	H trade price	0.2301	0.2508	0.2811	0.2906	0.3242	0.3814

Table 3. Autocorrelation and Hurst exponent statistics for Agent-based model

International Journal of Finance and Managerial Accounting / 219

Figure 3.1- Price series graph for model

Figure 3.2- Autocorrelation & Hurst exponent graphs for model

5.2. The autocorrelation and Hurst exponent tests for selected samples

The autocorrelation and Hurst exponent tests were run on the closing price time series of selected stocks of New York, Frankfurt, Tokyo, and Tehran.

The autocorrelation test was performed on the closing price time series with 400 lags. Hurst's exponent test was also performed on the closing price time series with 20 lags. The descriptive statistics of the results of these two tests are reported separately in the tables for

each stock market (Tables 4 to 7). The corresponding graphs for each market are also shown in Figures 4.1 to 7.2.

As can be seen from the tables and graphs, the markets in most cases in these parameters, despite their differences, follow a similar pattern in the long term which shows similar results to the study of ASEAN stock markets by Sharma and Wongbangpo (2002).

	Table 4. Autocorrelation and Hurst exponent statistics (New York stock exchange)										
Financial market	Company name	Stock symbol	Stats	Min.	Q1	Median	Mean	Q3	Max.		
	Advanced Micro		AC trade price	0.0309	0.1623	0.3072	0.3798	0.5573	0.9959		
	Devices Inc.	AMD	H trade price	0.1831	0.4479	0.4820	0.4459	0.4973	0.5022		
G	Alibaba Group		AC trade price	0.0235	0.0951	0.2805	0.3676	0.5907	0.9973		
hang	Holdings Ltd. ADR	BABA	H trade price	0.1731	0.2753	0.3252	0.3108	0.3516	0.3914		
excl	Alphabet Inc Class	GOOGL	AC trade price	0.1835	0.3577	0.5044	0.5325	0.6956	0.9967		
ock	A		H trade price	0.0699	0.1039	0.1432	0.1490	0.1495	0.3839		
k sto	Alphabet Inc Class	0000	AC trade price	0.0672	0.2338	0.4151	0.4561	0.6630	0.9963		
Yorl	C	0000	H trade price	0.0237	0.0465	0.0969	0.1080	0.1178	0.3837		
Me	Alphabet Inc Class	4 N 477 NI	AC trade price	0.1592	0.3299	0.4867	0.5088	0.6371	0.9975		
ž	C	AMZN	H trade price	0.0946	0.1175	0.2335	0.2429	0.3449	0.4762		
	AMC	AMC	AC trade price	0.0216	0.2531	0.3509	0.4302	0.6227	0.9977		
	Entertainment	AMC	H trade price	0.1741	0.2251	0.2746	0.3620	0.3677	0.9730		

Vol.10 / No.37 / Spring 2025

Financial market	Company name	Stock symbol	Stats	Min.	Q1	Median	Mean	Q3	Max.
	Holdings Inc.								
	Annia Ina	AADI	AC trade price	0.1145	0.1731	0.2642	0.3681	0.5057	0.9914
	Apple life.	AAPL	H trade price	0.2300	0.3276	0.3683	0.3581	0.3971	0.4153
	Bank of America	PAC	AC trade price	0.0773	0.2830	0.5165	0.5064	0.7154	0.9970
	Corp.	DAC	H trade price	0.1503	0.3071	0.3210	0.3173	0.3391	0.3652
	Plaak Porry I td	BB	AC trade price	-0.2974	-0.1616	-0.0641	0.0729	0.2530	0.9922
	Blackbelly Ltu.		H trade price	0.1007	0.2325	0.2913	0.2697	0.3088	0.3330
	Pooing Co	D A	AC trade price	-0.1101	0.1149	0.4077	0.4148	0.7117	0.9983
	Boeing Co.	DA	H trade price	0.3860	0.4412	0.5009	0.4751	0.5055	0.5084
	DoouSion Inc.	DOCU	AC trade price	-0.2884	-0.2496	-0.1600	0.0090	0.1304	0.9942
	Docusign nic.	DOCU	H trade price	0.1372	0.2092	0.2853	0.2848	0.3508	0.4352
	Ecoshool: Inc	ED	AC trade price	0.2018	0.2960	0.4710	0.5014	0.6438	0.9970
	Facebook Inc. Ford Motor	ГD	H trade price	0.1614	0.1717	0.1934	0.2025	0.2305	0.2697
		F	AC trade price	0.0686	0.3040	0.5004	0.5093	0.7175	0.9977
	Company	г	H trade price	0.0127	0.0594	0.1111	0.2470	0.2659	0.9390

220 / Comparative Comparison of the Efficiency of Hybrid Model of an Agent-based ...

 Table 4. Autocorrelation and Hurst exponent statistics (New York stock exchange)

Financial market	Company name	Stock symbol	Stats	Min.	Q1	Median	Mean	Q3	Max.
	General Motors	GM	AC trade price	-0.3252	-0.0994	-0.0458	0.0095	-0.0001	0.9893
	Company	ONI	H trade price	0.0472	0.0862	0.1487	0.1868	0.2287	0.5873
	Intel	INTC	AC trade price	0.1394	0.3122	0.4558	0.5058	0.6968	0.9963
	Corporation	INIC	H trade price	0.0068	0.0489	0.0927	0.0957	0.1398	0.2079
	JPMorgan	IPM	AC trade price	0.1231	0.3499	0.5727	0.5528	0.7474	0.9968
	Chase & Co.	JI WI	H trade price	0.1384	0.1553	0.2216	0.3003	0.3144	0.8021
	Micron		AC trade price	0.0897	0.1198	0.2304	0.3558	0.5655	0.9950
	Technology Inc.	MU	H trade price	0.1565	0.2861	0.4627	0.3845	0.4723	0.4768
36	Microsoft	MSET	AC trade price	0.1117	0.2582	0.4440	0.4828	0.6777	0.9973
han	Corporation	MISI'I	H trade price	0.2716	0.5198	0.5793	0.5384	0.6023	0.6181
exc	Moderne Inc	MDNA	AC trade price	-0.2876	-0.2237	-0.1514	-0.0010	0.1939	0.9911
ock	woderna me.	WIKINA	H trade price	0.0145	0.0886	0.1347	0.1346	0.1788	0.2442
k st	Netflix Inc.	Inc. NELY	AC trade price	0.1712	0.3546	0.5088	0.5325	0.6808	0.9973
Yor	Neulix life.	MI LA	H trade price	0.1355	0.1649	0.2489	0.2497	0.3289	0.3701
ew	Nio Inc Class	NIO	AC trade price	-0.1784	-0.1372	-0.0719	-0.0009	-0.0180	0.9873
Ż	A ADR	NIO	H trade price	0.1253	0.1872	0.2355	0.2464	0.3043	0.3945
	NVIDIA		AC trade price	0.2172	0.2623	0.3062	0.4228	0.5338	0.9969
	Corporation	NVDA	H trade price	0.0949	0.2061	0.3640	0.3374	0.4540	0.5134
	Squara Inc	50	AC trade price	-0.0813	0.0656	0.1613	0.2392	0.3036	0.9934
	Square mc.	SQ	H trade price	0.0259	0.1008	0.1818	0.1807	0.2640	0.3368
	Tosla Inc.	TSLA	AC trade price	-0.0157	0.0057	0.0165	0.1453	0.1769	0.9875
	Testa Inc.	ISLA	H trade price	0.1097	0.1691	0.2986	0.2866	0.3854	0.4429
	Zoom Video		AC trade price	-0.3241	-0.2752	-0.1548	-0.0011	0.1566	0.9939
	Communicatio ns Inc.	ZM	H trade price	0.1912	0.4487	0.4685	0.4523	0.4831	0.4984

Table 4 shows the results of the autocorrelation and Hearst's exponent tests for 25 selected stocks on the New York Stock Exchange that were the most active in the period from 2013 to 2020.

Figures 4.1 and 4.2 show the output graphs of the autocorrelation and Hearst's exponent tests for 25 selected stocks on the New York Stock Exchange that were the most active in the period from 2013 to 2020.

Figure 4.1- Autocorrelation graphs for New York stock exchange

Vol.10 / No.37 / Spring 2025

Figure 4.2- Hurst exponent graphs for New York stock exchange

Financial market	Company name	Stock symbol	Stats	Min.	Q1	Median	Mean	Q3	Max.
	Adidas AC	ADSC	AC order signs	0.1452	0.3386	0.5985	0.5701	0.7770	0.9979
	Adidas AG	ADSOI	H order signs	0.0498	0.2163	0.2277	0.2279	0.24782	0.3150
	Allianz SE VNA O.N.	ALVC	AC order signs	0.1336	0.3063	0.4529	0.4818	0.6689	0.9963
		ALVU	H order signs	0017	0.0483	0.1031	0.1961	0.2000	0.7863
	DASE SE NA O N	DASEn	AC order signs	-0.4446	-0.3302	-0.2274	-0.0463	0.2089	0.9937
	DASI' SE INA U.N.	DASI'II	H order signs	0.0081	0.2643	0.2810	0.2738	0.3112	0.3767
	Power AC NA	PAVCn	AC order signs	-0.0461	0.0669	0.2726	0.3452	0.6015	0.9966
nge	Dayer AO NA	BAYGn	H order signs	0.1147	0.4034	0.4335	0.4026	0.4500	0.4618
chai	Bayerische Motoren	toren	AC order signs	-0.1501	-0.1003	0.1105	0.1997	0.4486	0.9949
x ex	Werke AG	DIVINO	H order signs	0.2988	0.3024	0.3105	0.3196	0.3337	0.3675
tock	Daimler AG NA	er AG NA O.N. DAIGn	AC order signs	-0.1824	-0.0087	0.2010	0.2498	0.4531	0.9965
urt s	O.N.		H order signs	0.3271	0.3295	0.3413	0.3545	0.3757	0.4283
nkfu	Delivery Here AC	DUED	AC order signs	0.1441	0.3165	0.5610	0.5408	0.7401	0.9919
Frai	Delivery nero AG	DHEK	H order signs	0.4964	0.5488	0.5938	0.5960	0.6490	0.6857
	Deutsche Bank AG	DBVC	AC order signs	0.0973	0.3134	0.5018	0.5308	0.7603	0.9982
	NA O.N.	DDKOII	H order signs	0.0358	0.2450	0.2913	0.2670	0.3285	0.3652
	Deutsche Post AG	DBWCn	AC order signs	-0.0431	0.0133	0.0989	0.2086	0.2980	0.9947
Deut	NA O.N.	DPWGII	H order signs	0.2721	0.2780	0.2879	0.3047	0.3178	0.3935
	Deutsche Telekom	DTEC	AC order signs	-0.2054	-0.0316	0.2101	0.2353	0.4515	0.9945
	AG Na	DTEGn	H order signs	0.3524	0.3570	0.3597	0.3599	0.3609	0.3738
	Deutsche Wohnen	DWNG	AC order signs	0.1434	0.3624	0.5434	0.5555	0.7421	0.9980

Table 5. Autocorrelation and Hurst exponent statistics (Frankfurt stock exchange)

Financial market	Company name	Stock symbol	Stats	Min.	Q1	Median	Mean	Q3	Max.
	AG		H order signs	0.1314	0.2384	0.2538	0.2580	0.2859	0.3479
	E ON SE	EONC	AC order signs	-0.1906	0.0058	0.3958	0.3691	0.6883	0.9964
	E.ON SE EONG	EONOII	H order signs	0.4502	0.4776	0.4947	0.4967	0.5090	0.5674
	Frenort AG	FRAG	AC order signs	-0.2464	0.0243	0.1141	0.2224	0.4177	0.9974
	Fraport AG		H order signs	0.1671	0.3312	0.3716	0.3589	0.4147	0.4704

Financial market	Company name	Stock symbol	Stats	Min.	Q1	Median	Mean	Q3	Max.
	HelloFresh SF	HEGG	AC order signs	-0.2615	-0.1787	0.0596	0.1834	0.5454	0.9919
	fiction result SE	111 00	H order signs	0.5080	0.6292	0.7064	0.6681	0.7187	0.7273
	Infineon		AC order signs	0.1548	0.2830	0.4398	0.4856	0.6635	0.9960
	Technologies AG NA O.N.	IFXGn	H order signs	0.3600	0.3649	0.3767	0.3865	0.3967	0.4537
	Linde PLC	LINI	AC order signs	-0.0477	0.1865	0.3683	0.4020	0.6156	0.9921
	Linde T Le	LINI	H order signs	0.3201	0.3337	0.3610	0.3650	0.3918	0.4216
	March KGa A	MPCG	AC order signs	0.0014	0.0790	0.2241	0.3061	0.4975	0.9946
	WEICK KOAA	MIKCO	H order signs	0.2803	0.2908	0.3116	0.3203	0.3406	0.3963
	Muench.		AC order signs	0.0624	0.1612	0.3319	0.3807	0.5979	0.9944
change	Rueckvers. VNA O.N.	MUVGn	H order signs	0.0306	0.0583	0.0922	0.1025	0.1389	0.2172
exc	Porsche	PSHG_p	AC order signs	-0.4020	-0.2135	0.0490	0.0612	0.1856	0.9951
t stock	Automobil Holding SE		H order signs	0.2095	0.2236	0.2479	0.2617	0.2892	0.3666
cfur	RWE AG ST	DWEG	AC order signs	-0.2655	-0.1252	0.2080	0.2536	0.5719	0.9963
ran	O.N.	KWEG	H order signs	0.5032	0.5379	0.5665	0.5597	0.5795	0.6126
Ľ.	SADSE	SADC	AC order signs	0.1345	0.3009	0.5403	0.5326	0.7492	0.9975
	SAF SE	SALO	H order signs	0.0526	0.0664	0.0925	0.1054	0.1370	0.2264
	Siemens AG	SIECa	AC order signs	-0.3028	-0.2020	0.0266	0.1058	0.3736	0.9934
	Class N	SIEGII	H order signs	0.3313	0.3390	0.3549	0.3606	0.3690	0.4249
	Volkswagen	VOWG n	AC order signs	-0.2987	-0.1436	0.0789	0.1013	0.1691	0.9946
	AG VZO O.N.	v0w0_p	H order signs	0.1800	0.1961	0.2197	0.2369	0.2597	0.3501
	Vonovia SE	VNAn	AC order signs	0.1206	0.2758	0.4423	0.4804	0.6615	0.9968
	VOIIOVIA SE	V IN/AII	H order signs	0.0113	0.0145	0.0297	0.0489	0.0679	0.1586
	Zalando SE	ZALG	AC order signs	-0.0842	0.0908	0.1362	0.2532	0.4005	0.9923
		ZALU	H order signs	0.0761	0.2365	0.3083	0.2929	0.3677	0.4462

Table 5. Autocorrelation and Hurst exponent statistics (Frankfurt stock exchange)

Table 5 shows the results of the autocorrelation and Hearst's exponent tests for 25 selected stocks on the Frankfurt Stock Exchange that were the most active in the period from 2013 to 2020.

Figures 5.1 and 5.2 show the output graphs of the autocorrelation and Hearst's exponent tests for 25 selected stocks on the Frankfurt Stock Exchange that were the most active in the period from 2013 to 2020.

Table 6 shows the results of the autocorrelation and Hearst's exponent tests for 25 selected stocks on the Tokyo Stock Exchange that were the most active in the period from 2013 to 2020. Figures 6.1 and 6.2 show the output graphs of the autocorrelation and Hearst's exponent tests for 25 selected stocks on the Tokyo Stock Exchange that were the most active in the period from 2013 to 2020.

Table 7 shows the results of the autocorrelation and Hearst's exponent tests for 25 selected stocks on the Tehran Stock Exchange that were the most active in the period from 1392 to 1399 Persian calendar.

224 / Comparative Comparison of the Efficiency of Hybrid Model of an Agent-based ...

Figure 5.1- Autocorrelation graphs for Frankfurt stock exchange

Figure 5.2- Hurst exponent graphs for Frankfurt stock exchange

Financial market	Company name	Stock symbol	Stats	Min.	Q1	Median	Mean	Q3	Max.
	Daiichi Sankyo	1568	AC trade price	-0.0639	-0.0290	0.0122	0.1351	0.1859	0.9917
	Co., Ltd.	4308	H trade price	0.0815	0.1404	0.1906	0.1942	0.2438	0.3181
	East Japan	0020	AC trade price	-0.0174	0.0052	0.1534	0.2888	0.5610	0.9926
	Railway Co.	7020	H trade price	0.1318	0.3402	0.3743	0.3446	0.3926	0.4102
	Fisai Co. Ltd	1522	AC trade price	0.0632	0.0839	0.1892	0.3307	0.5528	0.9945
	Elsar Co., Liu.	4525	H trade price	0.1094	0.1788	0.2372	0.2366	0.2968	0.3503
	Fast Retailing	0083	AC trade price	0.1095	0.2961	0.3992	0.4491	0.5800	0.9931
	Co., Ltd.	9985	H trade price	0.1979	0.2238	0.2353	0.2491	0.2687	0.3391
	Hitaabi I td	6501	AC trade price	-0.4250	-0.3264	-0.0172	0.0794	0.4348	0.9923
	Hitaciii Liu	6501	H trade price	0.2136	0.3445	0.3583	0.3479	0.3721	0.4087
ge	Japan Airlines	0201	AC trade price	-0.2156	-0.0324	0.2519	0.3026	0.6239	0.9956
han	Co Ltd.	7201	H trade price	0.4325	0.5244	0.5368	0.5253	0.5434	0.5493
exc	JFE Holdings,	5411	AC trade price	-0.1995	-0.0466	0.2103	0.2815	0.6122	0.9962
ock	Inc.	5111	H trade price	0.3581	0.4155	0.4228	0.4194	0.4338	0.4508
0 st	Kayanaa	6861	AC trade price	0.0287	0.1421	0.3335	0.3856	0.6038	0.9936
oky	Regence		H trade price	0.3254	0.3784	0.3817	0.3763	0.3833	0.3972
H	Lasartac Corp	6020	AC trade price	0.0870	0.1508	0.3403	0.4050	0.6720	0.9951
	Lasenee Corp.	0920	H trade price	0.3253	0.4862	0.5013	0.4826	0.5132	0.5207
	M3 Inc	2413	AC trade price	0.0962	0.1551	0.2776	0.3531	0.4882	0.9925
	WIS Inc.	2415	H trade price	0.1858	0.2984	0.3449	0.3478	0.4060	0.4885
	Mitsubishi UFJ		AC trade price	-0.0900	-0.0695	-0.0156	0.1952	0.4609	0.9945
	Financial Group Inc.	8306	H trade price	0.0337	0.2075	0.2481	0.2404	0.2984	0.3778
	Nidec Corp	6504	AC trade price	0.2988	0.4168	0.5352	0.5546	0.6481	0.9957
	rauec corp.	0374	H trade price	0.2008	0.2150	0.2404	0.2616	0.3002	0.3787
	Nintendo Co	7074	AC trade price	0.3243	0.4550	0.5704	0.6025	0.7400	0.9966
	Ltd.	1714	H trade price	0.1493	0.2623	0.2987	0.2924	0.3403	0.3876

 Table 6. Autocorrelation and Hurst exponent statistics (Tokyo stock exchange)

Table 6. Autocorrelation and Hurst exponent statistics (Tokyo stock exchange)

Financial market	Company name	Stock symbol	Stats	Min.	Q1	Median	Mean	Q3	Max.
	Nippon Steel	5401	AC trade price	-0.0887	0.0008	0.0847	0.2263	0.4222	0.9947
	Corp.	5401	H trade price	0.1976	0.2266	0.2470	0.2627	0.2891	0.3707
stock exchange	Nippon Yusen	0101	AC trade price	0.1748	0.3712	0.4990	0.5210	0.6464	0.9961
	K.K	7101	H trade price	0.3029	0.3049	0.3096	0.3288	0.3498	0.3932
	Pharma Foods		AC trade price	0.0279	0.0419	0.1542	0.2202	0.3383	0.9922
hange	International Co Ltd.	2929	H trade price	0.2855	0.2877	0.2900	0.2954	0.2974	0.3394
ехс	Recruit		AC trade price	0.2332	0.4501	0.6693	0.6172	0.7579	0.9970
stock	Holdings Co Ltd.	6098	H trade price	0.1425	0.1553	0.1730	0.1869	0.1985	0.2909
Tokyo	Renesas		AC trade price	-0.2955	-0.1771	0.1650	0.2023	0.5228	0.9943
	Electronics Corp.	6723	H trade price	0.3284	0.4302	0.4396	0.4333	0.4539	0.4685
	Softbank	0084	AC trade price	0.2000	0.2320	0.2705	0.3663	0.4620	0.9862
	Group Corp.	9904	H trade price	0.0361	0.1212	0.1502	0.1533	0.1942	0.2671
	Sony Corn	6758	AC trade price	0.3296	0.4486	0.6093	0.6086	0.7473	0.9962
	Sony Corp.	0750	H trade price	0.0852	0.1357	0.1744	0.1798	0.2188	0.2920

226 /	Comparative (Comparison (of the Efficiency	of Hybrid M	odel of an Agent-bas	ed
-------	---------------	--------------	-------------------	-------------	----------------------	----

Financial market	Company name	Stock symbol	Stats	Min.	Q1	Median	Mean	Q3	Max.
	Sumitomo		AC trade price	-0.1004	-0.0176	0.0284	0.1957	0.4092	0.9930
	Mitsui Financial	8316	H trade price	0.0846	0.1379	0.1847	0.1890	0.2355	0.3063
	SymBio		AC trade price	0.0500	0.1994	0.2970	0.3858	0.5589	0.9927
	Pharmaceutical s Ltd.	4582	H trade price	0.3255	0.3283	0.3300	0.3361	0.3402	0.3664
	Tokyo Electron	8025	AC trade price	0.2869	0.3683	0.5491	0.5595	0.7371	0.9958
	Ltd.	8035	H trade price	0.1591	0.3446	0.3691	0.3466	0.3823	0.4103
	Totoku Electric	5807	AC trade price	-0.0424	0.0509	0.3673	0.3979	0.7162	0.9969
	Co Ltd	3607	H trade price	0.3249	0.4917	0.5212	0.5036	0.5491	0.5623
	Toyota Motor	7203	AC trade price	-0.2053	-0.1761	-0.0613	0.1041	0.3211	0.9895
	Corp.	1203	H trade price	0.0748	0.1874	0.2292	0.2312	0.2900	0.3623

Figure 6.1- Autocorrelation graphs for Tokyo stock exchange

International Journal of Finance and Managerial Accounting / 227

Figure 6.2- Hurst exponent graphs for Tokyo stock exchange

Financial market	Company name	Stock symbol	Stats	Min.	Q1	Median	Mean	Q3	Max.
	Telecommunicatio	akhaber	AC trade price	-0.0358	0.0078	0.1377	0.2914	0.5617	0.9967
	n Company of Iran		H trade price	0.2120	0.2280	0.2431	0.2623	0.2892	0.3594
	Asia Insurance	ania	AC trade price	-0.0116	0.0007	0.0891	0.2372	0.4363	0.9950
	Co.	asia	H trade price	0.0360	0.0618	0.0862	0.1074	0.1413	0.2437
ľ	Parsian Oil and		AC trade price	-0.0046	0.0505	0.1903	0.3250	0.5890	0.9976
	Gas Development Group	parsan	H trade price	0.3107	0.3117	0.3229	0.3382	0.3507	0.4205
	Tamin Petroleum		AC trade price	-0.0335	-0.0069	0.0941	0.2702	0.5375	0.9975
ange	& Petrochemical investment Co.	tapico	H trade price	0.2319	0.2464	0.2651	0.2904	0.3225	0.4138
xch	IRISL Group	hakashti	AC trade price	-0.0260	-0.0030	0.0794	0.2412	0.4589	0.9977
ik e			H trade price	0.0686	0.0786	0.1086	0.1322	0.1586	0.2920
stocl	GAIDA C	VI.	AC trade price	-0.1091	-0.0061	0.1448	0.2008	0.3594	0.9920
ran	SAIPA Gloup	Knasapa	H trade price	0.1191	0.1439	0.1759	0.1724	0.1902	0.2391
Teh	Inon Wheeler Co	1-1	AC trade price	-0.0669	-0.0331	0.0585	0.1430	0.2666	0.9875
	Iran Knodro Co.	knodro	H trade price	0.0068	0.0206	0.0374	0.0522	0.0767	0.1448
			AC trade price	-0.1177	-0.0719	0.0847	0.2092	0.4234	0.9976
	MAPNA Group	rampna	H trade price	0.1254	0.1284	0.1505	0.1855	0.2360	0.3330
	Bandar Abbas Oil	-h -hh	AC trade price	0.1081	0.2005	0.2709	0.3695	0.4907	0.9971
	Refining co.	snabandar	H trade price	0.1399	0.1466	0.1712	0.2087	0.2466	0.4154
	Isfahan Oil	1	AC trade price	0.0109	0.1222	0.2569	0.3264	0.4673	0.9975
	Refining Co.	snepna	H trade price	0.2237	0.2282	0.2440	0.2782	0.3082	0.4635
	Fars Construction	sefars	AC trade price	-0.0820	-0.0646	0.1256	0.2198	0.3824	0.9979

Table 7. Autocorrelation and Hurst exponent statistics (Tehran stock exchange)

228 / Comparative Comparison of the Efficiency of Hybrid Model of an Agent-based ...

Financial market	Company name	Stock symbol	Stats	Min.	Q1	Median	Mean	Q3	Max.
	and Development Co.		H trade price	0.1063	0.1099	0.1341	0.1635	0.1837	0.3322
	Persian Gulf	2	AC trade price	-0.0406	0.0045	0.1481	0.2524	0.4222	0.9957
	Petrochemical Industries	Petrochemical fars Industries Khouzestan Steel co.	H trade price	0.1544	0.1580	0.1805	0.2025	0.2278	0.3225
	Khouzestan Steel co.		AC trade price	0.0103	0.0492	0.0996	0.2717	0.4510	0.9961
			H trade price	0.1761	0.1870	0.2069	0.2270	0.2422	0.3487

Financial market	Company name	Stock symbol	Stats	Min.	Q1	Median	Mean	Q3	Max.		
	National Iranian		AC trade price	0.0310	0.0569	0.1382	0.2941	0.4886	0.9975		
	Copper Industries Co.	fameli	H trade price	0.1032	0.1101	0.1427	0.1672	0.1923	0.3242		
	Mobarakeh Steel	foolad	AC trade price	0.1151	0.1337	0.1961	0.3568	0.5709	0.9973		
	Company	Toolad	H trade price	0.1418	0.1606	0.1752	0.2064	0.2371	0.3563		
	Chadormalu		AC trade price	0.0386	0.1019	0.2658	0.3715	0.6367	0.9920		
	Mining and Industrial Co.	kachad	H trade price	0.3707	0.4611	0.4763	0.4618	0.4769	0.4880		
	Golgohar Mining	Irogal	AC trade price	0.0894	0.1654	0.3187	0.4233	0.6953	0.9958		
	& Indudtrial Co.	Kagai	H trade price	0.4173	0.4513	0.4629	0.4618	0.4780	0.4923		
	Omid Investment		AC trade price	0.0276	0.0615	0.1624	0.3325	0.6104	0.9982		
80	Management group Co.	vaomid	H trade price	0.2375	0.3407	0.3724	0.3755	0.4211	0.4830		
han	Mellat Bank	webmellat	AC trade price	-0.0524	0.0244	0.1487	0.2274	0.3462	0.9911		
exc			H trade price	0.0022	0.0056	0.0273	0.0513	0.0805	0.1851		
ock	Oil Industry	vanaft	AC trade price	0.0271	0.1286	0.3320	0.4074	0.6799	0.9970		
n sto	Investment Co.		H trade price	0.4117	0.4227	0.4414	0.4419	0.4584	0.4767		
hrai	Decoursed Dept	vapasar	AC trade price	-0.0488	0.0074	0.1626	0.3027	0.5866	0.9965		
Te	Pasargau Bank		H trade price	0.2887	0.4007	0.4056	0.4090	0.4291	0.4906		
	Toionat Donly	votoionot	AC trade price	-0.1229	-0.0669	0.0111	0.1835	0.3981	0.9960		
	Тејагат Банк	vatejarat	H trade price	0.0185	0.0881	0.1525	0.1615	0.2300	0.3267		
	Ghadir Investment	voghodir	AC trade price	-0.0515	-0.0032	0.1414	0.2921	0.5849	0.9977		
	Co.	vagnaun	H trade price	0.2826	0.3122	0.3275	0.3438	0.3674	0.4383		
	Mining and		AC trade price	0.0861	0.1342	0.2430	0.3824	0.6241	0.9931		
	Metals Development Investment Co.	vamaaden	H trade price	0.3026	0.3110	0.3263	0.3416	0.3668	0.4107		
	Mobile		AC trade price	-0.0093	0.0496	0.1038	0.2427	0.3741	0.9961		
	Telecommunicatio n Company of Iran	hamrah	H trade price	0.1010	0.1106	0.1306	0.1521	0.1717	0.2882		

Table 7. Autocorrelation and Hurst exponent statistics (Tehran stock exchange)

International Journal of Finance and Managerial Accounting / 229

Figure 7.1- Autocorrelation graphs for Tehran stock exchange

Figure 7.2- Hurst exponent graphs for Tehran stock exchange

Figures 7.1 and 7.2 show the output graphs of the autocorrelation and Hearst's exponent tests for 25 selected stocks on the Tehran Stock Exchange that were the most active in the period from 1392 to 1399 Persian calendar.

5.3. Mann-Whitney U Test for data samples

5.3.1. Mann-Whitney U Test for autocorrelation data samples

A data panel with two groups was created to compare the median of the autocorrelation data of the model and the autocorrelation data of each of the selected shares in financial markets. In the first group the data of the first 10 lags of autocorrelation output of the model, and in the second group the data of the first 10 lags of the autocorrelation data related to each of the selected shares of financial markets were placed. The results of the Man-Whitney test on the two groups are shown in Table 8.

Null Hypothesis: The distribution of the Rank of Ac is the same across categories of groups.

The result of the Mann-Whitney test comparing the autocorrelation of the time series of the model price with the panel data of the autocorrelation of the time series of the closing price of the selected stocks of the selected financial markets shows that the distribution of the rank of the autocorrelation is the same in both groups. Therefore, it can be concluded that these two populations have the same shape of their data, and thus the model can simulate the behavior of financial markets well. Jirasakuldech et al. (2011) and Zheng & Chen (2009) used similar methods in their research. These methods included the use of time series autocorrelation analysis and the non-parametric Mann-Whitney test for comparing the target population.

Financial market	Mann- Whitney U	Wilcoxon W	Test Statistic	Standard Error	Standardized Test Statistic	Asymptotic Sig. (2-sided test)	Decision
New York stock exchange	1693.000	33068.000	1693.000	233.184	1.900	0.057	Retain the null hypothesis
Frankfurt stock exchange	1643.000	33018.000	1643.000	233.184	1.685	0.092	Retain the null hypothesis
Tokyo stock exchange	1441.000	32816.000	1441.000	233.184	0.819	0.413	Retain the null hypothesis
Tehran stock exchange	1657.000	33032.000	1657.000	233.184	1.745	0.081	Retain the null hypothesis

Table 8. Independent-Samples Mann-Whitney U Test Summary

5.3.2. Mann-Whitney U Test for Hurst data samples

Also, for comparing the median of the Hurst exponent between two groups of the model and selected shares in financial markets a data panel with two groups was created. In the first group data of the 20 lags of the Hurst output of the model and in the second group data of the 20 lags of the Hurst output of selected shares in financial markets related to each of the selected shares of financial markets were placed. The results are shown in Table 9.

Null Hypothesis: The distribution of the Rank of Hurst is the same across categories of groups.

Financial market	Mann- Whitney U	Wilcoxon W	Test Statistic	Standard Error	Standardized Test Statistic	Asymptotic Sig. (2-sided test)	Decision
New York stock exchange	4551.000	129801.000	4551.000	658.913	-0.681	0.496	Retain the null hypothesis
Frankfurt stock exchange	5960.000	131210.000	5960.000	658.913	1.457	0.145	Retain the null hypothesis
Tokyo stock exchange	5535.000	130785.000	5535.000	658.913	0.812	0.417	Retain the null hypothesis
Tehran stock exchange	3787.000	129037.000	3787.000	658.913	-1.841	0.066	Retain the null hypothesis

Table 9. Independent-Samples Mann-Whitney U Test Summary

Also, the result of the Mann-Whitney test comparing the Hurt exponent of the time series of the model price with the panel data of the Hurt exponent of the time series of the closing price of the selected stocks of the selected financial markets shows that the distribution of the rank of the long-term memory is the same in both groups. Therefore, it can be concluded that these two populations have the same shape of their data, and thus the model can accurately simulate the behavior of financial markets. Martinez et al. (2018) and Freund and Pagano (2000) used similar methods in their research, employing time series Hurst exponent analysis and non-parametric Mann-Whitney test to compare the target population.

6. Conclusion

In this research, agent-based modeling and machinelearning methods have been used to design the hybrid model. The purpose of implementing the designed model is to compare the efficiency of using the model in automating algorithmic trading strategies in global financial markets. The model has been designed and executed, and the global variance sensitivity analysis has been performed to validate the model. The autocorrelation and Hurst exponent analysis tests were performed on the model's trading price time series.

In addition, the autocorrelation and Hurst's exponent analysis tests were performed on the historical data of the selected stocks of New York, Frankfurt, Tokyo and Tehran financial markets.

The Mann-Whitney U test was performed on the autocorrelation and Hurst's exponent data of the model and data panel of the selected stocks of each market to compare two samples or groups and to assess whether the two sampled groups are likely to come from the same population. The Mann-Whitney test showed that the model can effectively predict the behavior of actual financial markets.

Agent-based models consider systems at a decentralized level. Such a level of detail includes the description of several agent attributes and behaviors and their interaction with the environment. In this model, agents learn and exhibit strategic behavior, and they attempt to simplify realities. Real-world market participants exhibit irrational behavior, subjective choices, and complex psychology. However, the agents are still able to generate realistic macro-level stylized facts. Constructing such agents requires a very different kind of data than traditional top-down,

mathematical models. You need to know how market participants behave, interact, form relationships, and make decisions. Agent-based models can provide a simulation environment in which market dynamics are emergent phenomena that arise from the interactions of behaviors that occur on different time scales. Regulation of algorithmic trading is not a simple matter of yes or no. Stable markets can arise from environments dominated by high-frequency algorithmic strategies. It is the interactions of these strategies that are particularly important.

When the market has a very high proportion of noise traders, 90% or more, the permanent impact is actually larger than the temporary part. This can be explained by two facts: First, markets with only noise agents will follow a random walk and only exhibit a permanent impact. Second, the liquidity providers are not able to create a price-efficient market, and the autocorrelation of returns can be seen in the increasing temporal market impact function. This is also why the difference between the temporary and permanent impact is the largest when there are much more liquidity consumers than liquidity providers.

Policymakers should take note that focusing efforts on the prevention of malicious behaviors and guiding regulation in that direction may not prove to be fruitful. Instead, regulators should focus on understanding how the interactions of market participants can lead to unexpected systemic behaviors.

Considering the diversity of the financial markets and the stocks selected in this research, it can be concluded that the model can provide a suitable model for automated algorithmic trading strategies. Given the need for investors to use the latest financial tools to compete in investing in the financial markets, it seems necessary to develop models that can make algorithmic trading possible for all users of these markets.

Agent-based modeling, combined with machine learning methods for training intelligent agents, can be a suitable method for developing models that can predict the behavior of other agents in the market and, based on those predictions, make an appropriate buy, sell, or hold decision and quickly replace those orders in the order book. Such a model allows regulators to understand the effects of algorithms on market dynamics. It also allows trading firms to optimize proprietary algorithms.

232 / Comparative Comparison of the Efficiency of Hybrid Model of an Agent-based ...

The execution of algorithmic trading compared to the old methods of market analysis and order placement using human factors can create many relative advantages for the users of these tools. The first advantage of these tools is the high speed of these agents in making decisions and placing orders in the market order book. Another advantage of these tools compared to human agents is the elimination of personal judgments such as doubt, fear, and greed that exist in human agents and disrupt the decision-making process.

7- Research limitations and areas for future research

Using large samples to train recurrent neural networks with the TensorFlow tool requires appropriate hardware. For large samples, TensorFlow workstations require a multi-core Intel processor, high-specification NVIDIA graphics cards, large memory RAM, air cooling for the GPU, and water cooling for the CPU.

Using other methods such as other types of neural networks, metaheuristic algorithms, and Support vector machines to train intelligent agents and comparing the efficiency of these methods in the performance of intelligent agents can lead to the discovery of more efficient methods for training intelligent agents. Also, using a diverse statistical population in other financial markets in developed and developing countries with larger samples and comparing the results of model performance in simulating the performance of these markets can be effective in optimizing algorithmic trading strategies.

References:

- * Aloud, M. E. (2020). The role of attribute selection in Deep ANNs learning framework for highfrequency financial trading. *Intelligent Systems in Accounting, Finance and Management,* 27(2), 43-54.
- * Andersson, H., & Britton, T. (2012). Stochastic epidemic models and their statistical analysis (Vol. 151): Springer Science & Business Media.
- * Bao, W., Yue, J., & Rao, Y. (2017). A deep learning framework for financial time series using stacked autoencoders and long-short term memory. *PloS one*, *12*(7), e0180944.
- * Booth, A. (2016). Automated algorithmic trading: Machine learning and agent-based modelling in

complex adaptive financial markets. University of Southampton,

- * Broersen, P. M. (2006). Automatic autocorrelation and spectral analysis: Springer Science & Business Media.
- * Carta, S., Ferreira, A., Podda, A. S., Recupero, D. R., & Sanna, A. (2020). Multi-DQN: an Ensemble of Deep Q-Learning Agents for Stock Market Forecasting. *Expert Systems with Applications*, 113820.
- * Casgrain, P., & Jaimungal, S. (2020). Mean-field games with differing beliefs for algorithmic trading. *Mathematical Finance*, 30(3), 995-1034.
- * Chakole, J. B., Kolhe, M. S., Mahapurush, G. D., Yadav, A., & Kurhekar, M. P. (2021). A Qlearning agent for automated trading in equity stock markets. *Expert Systems with Applications*, *163*, 113761.
- * Chan, N. T., LeBaron, B., Lo, A. W., & Poggio, T. (1999). Agent-based models of financial markets: A comparison with experimental markets.
- * Ezzat, H. M. (2016). On Agent-based Modelling for Artificial Financial Markets. (PHD). Cairo University, Retrieved from <u>https://www.researchgate.net/publication/3070124</u> 96 On Agent-Based_Modelling_for_Artificial_Financial_Marke ts?enrichId=rgreqae0c5c7d5a77006bb85007aaea5d9cf9-XXX&enrichSource=Y292ZXJQYWdIOzMwNz AxMjQ5NjtBUzozOTk2MDIxODEyNjMzNjBA MTQ3MjI4Mzk5MjQ1NQ%3D%3D&el=1 x_2& _esc=publicationCoverPdf
- * Freund, W. C., & Pagano, M. S. (2000). Market efficiency in specialist markets before and after automation. *Financial Review*, 35(3), 79-104.
- * Gilbert, N. (2008). Agent-based models: Sage.
- * Graves, A. (2013). Generating sequences with recurrent neural networks. *arXiv preprint arXiv:1308.0850*.
- * Ha, Y., & Zhang, H. (2020). Algorithmic trading for online portfolio selection under limited market liquidity. *European Journal of Operational Research*.
- * Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001). Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In: A field guide to dynamical recurrent neural networks. IEEE Press.

- * Jahandari, S., Kalhor, A., & Araabi, B. N. (2018). Online forecasting of synchronous time series based on evolving linear models. *IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50*(5), 1865-1876.
- * Jirasakuldech, B., Dudney, D. M., Zorn, T. S., & Geppert, J. M. (2011). Financial disclosure, investor protection and stock market behavior: an international comparison. *Review of quantitative finance and accounting*, *37*, 181-205.
- * Kissell, R. (2013). The science of algorithmic trading and portfolio management: Academic Press.
- * Li, Y., Zheng, W., & Zheng, Z. (2019). Deep Robust Reinforcement Learning for Practical Algorithmic Trading. *IEEE Access*, 7, 108014-108022. doi:10.1109/ACCESS.2019.2932789
- * Liu, C. (2015). Optimal Execution Strategies: A Computational Finance Approach.
- * Lovric, M. (2011). Behavioral finance and agentbased artificial markets.
- * MacFarland, T. W., & Yates, J. M. (2016). Introduction to nonparametric statistics for the biological sciences using R: Springer.
- * Manahov, V., Hudson, R., & Urquhart, A. (2019). High-frequency trading from an evolutionary perspective: Financial markets as adaptive systems. *International Journal of Finance & Economics*, 24(2), 943-962. doi:10.1002/ijfe.1700
- * Martinez, L. B., Guercio, M. B., Bariviera, A. F., & Terceño, A. (2018). The impact of the financial crisis on the long-range memory of European corporate bond and stock markets. *Empirica*, 45, 1-15.
- * Marton, B., & Cakir, H. (2022). Usage of the Hurst Exponent for Short Term Trading Strategies. *Available at SSRN 4290787*.
- * McGroarty, F., Booth, A., Gerding, E., & Chinthalapati, V. R. (2019). High frequency trading strategies, market fragility and price spikes: an agent based model perspective. *Annals* of Operations Research, 282(1), 217-244.
- * Mishkin, F. S. (2007). *The economics of money, banking, and financial markets*: Pearson education.
- * Nejad, M. G. (2016). On the contributions and the validation of an agent-based simulation model of innovation diffusion. *European Journal of Marketing*, 50. doi:<u>http://dx.doi.org/10.1108/EJM-02-2016-0108</u>

- * Nogales, F. J., Contreras, J., Conejo, A. J., & Espínola, R. (2002). Forecasting next-day electricity prices by time series models. *IEEE Transactions on power systems*, 17(2), 342-348.
- * North, M. J., & Macal, C. M. (2007). *Managing* business complexity: discovering strategic solutions with agent-based modeling and simulation: Oxford University Press.
- * Oesch, C. (2014). An agent-based model for market impact.
- * Qian, B., & Rasheed, K. (2004). *Hurst exponent* and financial market predictability. Paper presented at the IASTED conference on Financial Engineering and Applications.
- * Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., . . . Tarantola, S. (2008). *Global Sensitivity Analysis: The Primer*: Wiley.
- * Sharma, S. C., & Wongbangpo, P. (2002). Longterm trends and cycles in ASEAN stock markets. *Review of Financial Economics*, 11(4), 299-315.
- * Shehzad, H., Anwar, M., & Razzaq, M. (2023). A Comparative Predicting Stock Prices using Heston and Geometric Brownian Motion Models. *arXiv* preprint arXiv:2302.07796.
- * Tesfatsion, L. (2006). Agent-based computational economics: A constructive approach to economic theory. *Handbook of computational economics*, 2, 831-880.
- * van der Hoog, S. (2017). Deep Learning in (and of) Agent-Based Models: A Prospectus. arXiv preprint arXiv:1706.06302.
- * Wellman, M. P., & Wah, E. (2016). Strategic Agent-Based Modeling of Financial Markets. *journal of the social sciences*.
- * Zheng, X., & Chen, B. M. (2009). Modeling and analysis of financial markets using system adaptation and frequency domain approach. Paper presented at the 2009 IEEE International Conference on Control and Automation.