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ABSTRACT 
It is very important for managers, investors and financial policy-makers to detect and analyze factors 

affecting financial markets to obtain optimal decision and reduce risks. The importance of market analysis and 

attempt to improve its behavior understanding, has led analysts to use the experiences of other professionals in 

the fields such as social sciences and mathematics to examine the interaction of market in a different way. This 

article reviews the use of networks and graph theory to analyze the behavior of social and financial phenomena 

that in recent years has been expanded. First, the original of this theory that donate from discrete mathematics, is 

introduced and then some details are given about the characteristics of a network, such as power law property, 

scale-free networks and minimum spanning tree. The results show that financial markets dynamics have caused 

the dynamically development of the approaches, methods and models of market analysis, so the effect of 

investment opportunities on each other was evaluated to identify market behavior 
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1. Introduction 
In today’s world, financial markets activities lead 

to the production of massive amounts of data which 

causes many computational challenges. The use of 

intuitive techniques and using graphs with simple and 

comprehensive description of their features will 

increase understanding of data and extract their 

information (Ziegler, 2006). Small world models and 

scale-free networks that can be observed frequently in 

social phenomena have been widely used in areas such 

as technology sciences, physics, biology and 

economics. These two models of networks play a vital 

role in the study of complex phenomena. Networks 

have entered many discrete mathematics concepts and 

social sciences into financial sciences and have 

challenged the basic models. 

One of the simple descriptions in many of today’s 

systems is free-scale networks degree distribution, 

which is especially considered. These networks follow 

power law1, while the distribution tail declines much 

faster in the random networks. Financial markets are 

considered complex networks due to the interaction 

between investors and companies and also influential 

elements, such as banks and financial institutions. 

The studies of Boginsky et al. (2005) are among 

research conducted to describe capital market, in 

which threshold level method was used to create price 

correlation network in the U.S. market. The market 

structure in terms of components and independent sets 

using data mining techniques for classification of 

financial documentation were investigated in China’s 

financial markets by Hyang et al. (2009). During the 

past decade, a significant proportion of theoretical and 

experimental studies described the behavior of 

financial markets using graph theories. Other studies in 

this area include the correlations between stock price 

in the U.S. stock market and analysis of market graph 

structure by Chi and Li (2010), the analysis of South 

Korea market structure by Kim and Ha (2007) and 

free-scale structure of the Italian stock market 

compared to the U.S. capital markets (Garlaschelli et 

al, 2005). 

This paper aims to provide a new solution for 

network behavior modeling of financial markets which 

has been introduced and developed during the last 10 

years in the finance literature. In this model, unlike 

classical models based on cost-benefit, price changes 

are assumed affected by group behaviors and therefore 

price behavior of each financial input is affected by the 

group behavior. Discussion in graph theory and 

discrete mathematics are the background of this model. 

This article is organized as follows. In section 2 a 

detailed explanation of the research methodology is 

provided. Section 3 discusses scientific foundations of 

the study including a review of topology of networks 

and basic concepts used, such as the effect of small-

world and scale-free networks to better understand the 

market structure, behavior and changes. Section 4 will 

show how scale-free networks can be identified and 

also how homogeneous communities with almost the 

same behavior can be determined. Section 5 reviews 

experimental results and performance of complex 

networks, and finally, conclusions are provided in 

Section 6. 

 

2. Research methodology 
Aiming to promote knowledge in the field of 

finance, this study was conducted using scientific 

foundations and previous research and by library 

research method within a descriptive method 

framework based on a historical knowledge approach.  

 

3. Scientific foundations of the study 
Most economic and social systems etc. have 

complex indicators associated with their topology 

structure and the relationship between their elements is 

relatively regular. Many of these systems can be 

explained through complex networks and their related 

rules. During the 1970s, when scientists learned more 

about the behavior of advanced systems they found 

that the behavior is not constant in construct elements 

of these systems, but they endeavor to adapt to their 

surroundings with an intelligent behavior. In the 80s 

and 90s, researchers began to investigate models of 

economic phenomena which had fundamental 

differences with traditional models. These models 

introduced economic as a dynamic interactive system 

rather than a static balance system. New models 

provided new patterns which simulated the interaction 

of system factors like what occurs in reality. Financial 

markets were not an exception as well and used new 

interactive models such as complex networks to 

describe the behavior of their internal factors. 

Researchers have introduced two important features 

for complex networks that the ability to predict the 

network behavior depends on them. These two features 

include the effect of small-world and scale-free 
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networks. In the following we will briefly overview 

the basic concepts and features of complex networks, 

such as the effect of small-world, scale-free networks 

and minimum spanning tree. 

 

 

3.1. Network 
Network consists of a set of nodes that 

communicate with each other through edges (Figure 

1). Networks which generally follow the rules of graph 

theory are considered as main issues of discrete 

mathematics. Euler (1735) donated to a solution of the 

bridge problem, which the first problem solved by 

networks is considered as a guide for today’s 

knowledge of graph theory. Social sciences have been 

among pioneers in using networks that with using 

interactive questionnaires, social sciences have tried to 

find the relationships between people and modeling 

them by networks (Figure 2). Networks in which 

people are defined as node and interaction between 

individuals constitutes the edges, mainly aim to find 

the centrality, i.e. person or people who are in the 

center of interactions or have the most interactions 

with others and communication means how people 

interact in a group. 

Random graphs are one of the most important 

types of graphs in which the edges are distributed 

randomly and similarly, therefore they do not have 

distinctive and unique models. For example, suppose 

that there is a binomial distribution for the number of 

neighbors in a network, therefore most nodes have 

similar degrees. Most networks in the real world are 

not random graphs and have clear and distinct 

structures. 

More recently, the focus has changed from small 

network analysis, edges and nodes to statistical 

properties of large graphs. Network theory follows 

three goals. The first goal is to find statistical 

properties such as networks degree distribution or path 

length distribution which determine structural and 

behavioral characteristics of the network and also to 

find appropriate ways to measure these characteristics. 

The second goal is to establish a network model to 

understand the characteristics of the network, their 

nature and how nodes interact with each other. Finally, 

the third goal is to identify rules of the network and 

predict its behavior, especially small communities’ 

behavior. 

 

 

 
Figure 1- A small network with 8 nodes and 10 edges 
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Figure 2- Three examples of real-world network: (a) Prey - hunter network in a lake, (b) Researchers’ interactions 

network in a private research institute, (c) Network of sexual relationships between individuals 

 

 

3.2. Effect of small world 
Stanley Milgram (1960) in a study sent 

several letters through person to person for reaching 

the destination. Although many of the letters were 

missing, a quarter of them reached their destination by 

an average six people. According to this study, the 

majority of nodes in a large network communicate to 

each other through a short distance. This feature has 

been investigated in large networks. This effect 

justifies the consequence of dynamic phenomena in 

networks. In fact, this effect leads the spreading speed 

of events to be more than what was predicted in large 

networks. For example, rumor, on average, needs only 

six steps to reach anyone in the community. 

The average shortest Euclidean distance 

between pairs of nodes in a network without direction 

is defined as follows: 

 

   
 

 
 
      

∑   

   

 

 

where dij is the Euclidean distance between nodes i and 

j. If the number of nodes connected to a central node 

increases exponentially, the average distance between 

network nodes increases at a logarithmic rate. This 

means that a network has this effect in which with the 

increased number of nodes and network size, the 

average distance of its nodes increases at a logarithmic 

rate. Bollobas and Riordan (2002) showed that the 

average distance of network nodes with power law 

distribution increases at a rate less than logarithmic 

rate. 
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3.3. Scale-free networks 
Suppose that the degree of a node in a network is 

equal to the number of edges connected to it (k). In 

this case, the degree distribution of the network is a 

histogram drawn with k that the distribution in random 

graphs will be a Poisson distribution or a binomial 

distribution. Real-world networks have a quite 

different distribution compared to random graphs 

distribution and usually have kurtosis to the right, i.e. 

they have a tail and therefore have data that are 

significantly far from the mean. If there is a , by 

which distribution function can be estimated in the 

form of an exponential function Pk  K-α, the 

distribution follows power law. Here, Pk is the 

probability that a node has in-degree k. 

Networks that their distribution function follows a 

power law are called scale-free networks. In these 

networks Pareto principle (also known as the 80-20 

rule) is also true i.e. 80% of the edges pass 20% nodes. 

Complex networks can be described by fitness model. 

Fitness index is the ability of each node in relation to 

other nodes. According to this model, the preference of 

each node in connection with another node depends on 

the fitness of a product and the number of its 

connections. If a network follows this model, it 

follows power law and therefore is a scale-free 

network. 

One of the important properties of scale-free 

networks is that they are destroyed when all of their 

nodes are eliminated. Computer viruses use this 

property for their spread and stability. 

 

3.4. Minimum spanning tree 
Minimum spanning tree is defined in graphs which 

have weighted edges. It is a subset of graph edges 

which forms a tree containing all vertices and total 

weight of their edges is the lowest possible amount 

among all such trees. In fact, the problem is to find a 

subset of graph edges with the lowest total weight that 

there is still a path between both vertices of this 

subgraph. 

Problems in which the aim is to create a network 

that cost should be paid for linking two members, 

minimum spanning tree represents the lowest cost 

network. Prim’s and Kruskal’s algorithms are 

algorithms used to achieve the minimum spanning 

tree. 

 

Prim’s algorithm 
1. Starting from a node, 
2. Finding the minimum path connected to the 

node, 
3. Finding the minimum path connected to the 

network created, 
4. Continuing the algorithm to visit all nodes. 

 

Kruskal’s algorithm 
1. Ordering edges based on their weight, 
2. Starting from the edge with minimum weight 

and adding two nodes of it to the tree, 

3. Choosing the next edge and repeating the 
previous step, 

4. Continuing the algorithm to visit all the nodes. 
 

 

4. Community recognition in the 

network 
Community or a cohesive subgroup is a set of 

nodes in a graph or network that has a strong, direct 

with a high intensity relationship. Also, connection of 

two nodes is the minimum number of edges that 

should be removed, so that there is no connection 

between two nodes, i.e. it is the number of paths that 

do not share any edge. The most important issue in 

network analysis is to identify models or communities 

that are repeatable and have similar behavior. In the 

following some of the most important ways of 

identifying these models are presented. It is worth 

noting that networks can be described in the form of a 

two-dimensional matrix as follows: 

 

 Node 1 Node 2 Node 3 ………. Node n 

Node 1 0 r12 r13  r1n 

Node 2 r21 0 r23  r2n 

Node 3 r31 r32 0  r3n 

 

………. 

 

     

Node n rn1 rn2 rn3  0 

 

 

4.1. Johnson’s hierarchical clustering  
In this method, first the nearest two nodes are 

identified (the smallest number in the distance matrix). 

These two nodes are identified as a primary 

community and are also merged in the distance matrix 

that in this case the minimum distance in each 
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community with other nodes is considered as the 

distance. This process continues until to reach a single 

community (Figure 3). Cluster selection depends on 

the desired level, and this algorithm has the flexibility 

to select communities. 

 

 
Figure 3- An example of Johnson’s hierarchical clustering 

 

 

4.2. Matrix permutation 
In this way, the nodes that have stronger 

connections are placed close together in rows and 

columns (Figure 4). In this method the objective 

function is: 

 

    ∑∑         

  

 

 

- n1 n2 n3 n4 n5 

n1 - 0 1 0 1 

n2 0 - 0 1 0 

n3 1 0 - 0 1 

n4 0 1 0 - 0 

n5 1 0 1 0 - 

 

- n5 n1 n3 n2 n4 

n5 - 1 1 0 0 

n1 1 - 1 0 0 

n3 1 1 - 0 0 

n2 0 0 0 - 1 

n4 0 0 0 1 - 

 

 
Figure 4- An example of permutation matrix 

 

 

4.3. Girvan-Newman hierarchical 

clustering  
Local bridge is the weakest tie in the network. This 

method is based on the belief that the removal of local 

bridge does not change a whole network; therefore, 

during consecutive steps local bridges are removed 

until nodes become completely single (Figure 5). 

Social selection also depends on the desired level. 
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Figure 5- An example of Girvan-Newman hierarchical 

clustering 

 

4.4 Modularity maximization 
Module is a utility function that measures the 

quality of network division into communities and its 

value is between 1 and -1. 
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where m represents the number of expected edges 

between two nodes in a random graph. 
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Communities are identified according to possible 

modules in the network. Heuristic methods and 

algorithms, such as greedy algorithm or retrofitting 

algorithm are also used to identify modules (Figure 6). 

 

 

4.5 Heuristic technique 
This method has been inspired by models 

used in natural phenomena, such as the clustering of 

insect larvae or separation of carcasses. Here, the 

distance between two nodes is defined as follows: 
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Local density is also defined as follows: 
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where S×S is the node’s neighbors in two 

directions, r is the current status, α is heterogeneity and 

f(v1) is the average distance to neighboring nodes. In 

this method the probability of selecting a node is as 

follows: 

 

       (
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In this method the probability of not selecting a node is 

as follows: 
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Figure 6- An example of modularity maximization 

 

 

5. Research on experimental 

application of complex networks in 

financial markets 
Hierarchical structure was used by Mantegna 

(1999), Bonanno et al. (2001), Vandewalle et al. 

(2000) and Bonanno et al. (2003) in their studies to 

achieve clear classifications of market portfolio based 

on time series data. Using time series data of stock 

prices, Mantegna examined Dow Jones and S&P 500 

indices from 1989 to 1995. The first step in this 

research was to propose a measure to calculate the 

distance of stock network nodes, thus correlation 

coefficient was used as follows: 

 

        
(    )          

√   
       

   (  
       

 )

 

 

so that Pi(t) is the price of the stock i at time t and r i = 

Ln Pi(t) – Ln Pi(t-t). The distance between two stocks 

is defined as follows: 

 

         √               

 

For this distance three conditions are defined: 

 

1. di,j (t) = 0  if i = j 

2. di,j (t) = dj,i (t) 

3. di,j (t) ≤ di,k (t) + dk,j (t) 

 

This research showed that it is possible to find the 

structure of a minimum spanning tree and hierarchical 

structure in the stocks distance matrix (Figures 7 and 

8). 
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Figure 7- Minimum spanning tree including 30 shares used in the Dow Jones index 

 

 

Onnela et al. (2003) examined mean distribution 

and variance of the New York stock exchange from 

January 2, 1980 to December 31, 1999 and the 

dynamics of assets tree in the portfolio analysis. They 

used statistical concepts such as mean, variance, 

skewness and kurtosis. Onella et al. showed that the 

minimum spanning tree has a well-connected structure 

and follows a free-size structure. They also concluded 

that stocks with the lowest risk tend to be on the 

margin of the tree, or, in other words, have a 

maximum distance from the central node. This study 

showed that the risk of the portfolio is directly related 

to the normality of the minimum spanning tree, thus, 

diversification in the portfolio should be achieved 

according to normalization of the tree. 

Bonanno et al. (2004) examined covariance 

network in New York Stock Exchange (NYSE) and 

using different portfolios at different times tried to 

show how significant economic data can be extracted 

from communication matrix of nodes. Using time 

series, they calculated the correlation coefficient 

between stocks and created a completely connected 

graph, i.e. spanning tree (a type of complete graph 

without loop), then using the minimum spanning tree 

(MST) they tried to examine the behavior of the stock. 

Using this method, Bonanno et al. could show the 

connection between the stocks geometrically in a 

classified form. They used the formula defined by 

Mantegna (1999) to calculate the correlation 

coefficient and used the obtained distance matrix to 

create the minimum spanning tree. The change of 

stocks behavior can be evaluated in various periods of 

time with change of t. The decrease of stock return 

correlations by changing the time horizon is called 

Epps effect. Using data of the New York Stock 

Exchange, assuming t = d was six hour and a half and 

dividing t into smaller times, the researchers drew the 

minimum spanning tree of stocks (Figure 9). They 

eventually concluded that using networks theory is a 

useful technique for filtering economic data and 

identifying stocks’ behavior in different periods. 

Considering shares and shareholders as nodes and 

connecting them based on the partnership, Garlaschelli 

et al. (2005) created a large network of investors. In 

this network the in-degree of each investor (kin) is the 

sum of weighted edges (v) connected to v that 

indicates the stock in the portfolio v (portfolio 

diversification) and also the value of investment. To 
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conduct their study, they used the data of the New 

York Stock Exchange and the National Association of 

Securities Dealers Automated Quotations (NASDAQ) 

in 2000 and Borsa Italiana in 2002. Distribution of P > 

Kin is the number of nodes whose in-degree is greater 

than or equal to the specific value kin. Distribution of P 

> V is also the number of portfolios that their value is 

greater than or equal to v. The findings of these two 

researchers showed that both distributions follow the 

power law, so we will have: 

 

             

   
                       

  
  

 

                                      

 

 

 
Figure 8- A part of minimum spanning tree including shares used in the S&P 500 

 

 

The question raised here is that whether 

there is a relationship between portfolio diversification 

and its value? Garlaschelli et al. found that the 

portfolio value is an increasing function based on 

changes in its in-degree and their logarithmic function 

is a linear function. One of the statistical 

characteristics of the graph is node’s fitness. In the 

graph created by these researchers, there are two nodes 

including N nodes as investor with fitness variable x 

and asset M or company with variable y and obviously 

the total number of nodes is M + N. Fitness variable xi 

is asset value in investor’s portfolio and yj is long-term 

expected dividend of asset j. Here, f(xI,yi) is the 

possibility of a connection between i and j and 

f(x,y)≠f(y,x) that come from the direction of the graph. 

This function can be defined as follows: 

F(x,y) = g(x) h(y) 

 

So that g(x) is an increasing function of x, which 

indicates capital increase will result in greater access 

to information and payment of higher transaction costs 

and thus portfolio diversification increases, h(x) is a 

function of investor’s information processing strategy. 

If nodes x have a distribution of p(x), the in-degree 

distribution function of nodes is as follows: 

 

        [      ] 
       

    
 (1) 
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Figure 9- Minimum spanning tree for 100 shares has the highest working capital in New York stock exchange with 

different ts 
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This research showed g(x) = cxβ, β > 0 that c is 

defined to ensure 0 ≤ g(x) ≤ 1; therefore, assuming that 

the distribution p(x) in the large graph is p(x)  xα, we 

will have: 

 

Kin(x)  x  (2) 

P(Kin)  Kin
(1--) /   (3) 

 

These observations indicate that, p(x), Kin(v) and 

P(Kin) all follow power law. The following relation is 

obtained by combining equations (2) and (3):  

 

 = (1-) / (1-) 

 

Kyungsik et al. (2007) examined price changes of 

all joint-stock companies in Karachi Stock Exchange 

in 2003 to identify the node degree distribution, edges’ 

density and size of communities. Suppose that ri(t) is 

the stock price return, which is defined as follows: 

 

ri(t) = ln [pi(t+t) / pi(t)] 

 

where pi(t) is the stock price at time t. Also 

suppose that matrix C contains the covariance between 

the stock price return, in which: 

 

    
    ̅̅ ̅̅     ̅   ̅

√(   ̅̅ ̅     ̅
 )(   ̅̅ ̅     ̅

 )

 

 

These researchers showed that the stock network 

based on correlation coefficient follows the power law. 

Then, a threshold level  was defined in such a way 

that all edges with less weight were excluded (Figures 

10 and 11). 

Wei Jiang et al. (2009) used the threshold level to 

create the correlation network of Chinese stock and to 

study stock structure based on it. They showed that 

this network follows the power law and therefore 

specific communities can be identified among the 

stocks that this contributes to stock clustering for 

creating an optimal portfolio. This study also indicated 

that China’s stock network is resistant to stock random 

failure, but is fragile in the face of deliberate sudden 

changes. 

Chi et al. (2010) in their study showed that the 

United States stock network has free-size property, so 

that the nodes are stocks and edges are the covariance 

between stocks. These researchers used transactions 

data from 1 July 2005 to 31 August 2007 and created 

stock network with threshold of 0.9 using calculated 

covariance by the following formula (Figure 12). 

 

ri(t) = ln [pi(t+t) / pi(t)] 

 

    
    ̅̅ ̅̅     ̅   ̅

√(   ̅̅ ̅     ̅
 )(   ̅̅ ̅     ̅

 )

 

 

 

 

Figure 10- Distribution of edges for and 

 

 

 

 
Figure 11- Edges density distribution 
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Kheyrkhah et al. (2015) created correlation 

network of Tehran Stock Exchange to detect 

homogenous communities and introduced them as a 

cluster. In fact, using stock data from 2010 to 2013, 

this study has provided a new method for clustering by 

considering the behavior of dividends. Examining 

pairwise correlation distribution of stocks, these 

researchers initially showed that this is a free-scale 

distribution, and thus it follows power law. Then, 

using thresholds of 0.75, 0.90, 0.95 and 0.5 they 

created four correlation graphs and calculated their 

amount of modularity. Then, using visualization 

techniques, they draw a graph with a threshold of 0.9 

and 0.75 and determined the communities within them 

(Figure 13). 

 

 

 
Figure 12- Correlation network of U.S. stock exchange from 1 July 2005 to 31 August 2007 with threshold of 0.9  
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 > 0.75

 > 

0.90  

Figure 13- Stocks correlation network 

 

 

6. Conclusions and discussion 
Different components of financial markets 

do not interact unilaterally and affect each other quite 

extensively. Given the complexity of business 

environment, and also advancement of decision-

making techniques, traditional linear analysis methods 

or prediction algorithms based on identifying how a 

dependent variable is influenced by several 

independent variables do not satisfy the needs of 

investors and managers. The study of the application 

of networks and graph theories explains the behavior 

of financial markets and the interaction of market 

factors together. The review of the above applications 

showed that each variable depends on other factors, 

therefore, no variable can be assumed as independent. 

It is clear that the introduction of network 

communication in the financial area does not reject 

previous methods and models in this area, but rather 

challenges the assumption of considering variables as 

independent. In this approach, the relationship between 

variables is determined through available methods and 

models. 

In this paper, the relatively short history of 

using graph theory and network in finance, features 

and methodology used are described. There are many 

areas that require further study in this regard, such as 

economic factors or financial marketing. 
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Not’s 

                                                             
1
- p(k) ~ k

-
 , where p(k) is network degree distribution 
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