Time-Varying Modeling of Systematic Risk: using High-Frequency Characterization of Tehran Stock Exchange

Document Type : Original Article

Authors

1 PhD Candidate in Finance, Shahid Beheshti University, Tehran, Iran (Corresponding author)

2 Associate Professor of Finance, Shahid Beheshti University, Tehran, Iran

Abstract

We decompose time-varying beta for stock into beta for continuous systematic risk and beta for discontinuous systematic risk. Brownian motion is assumed as nature of price movements in our modeling. Our empirical research is based on high-frequency data for stocks from Tehran Stock Exchange. Our market portfolio experiences 136 days out of 243 trading days with jumps which is a considerable ratio. Using 1200 monthly (5200 weekly) estimations, 100 stocks for 12 months (52 weeks), 2400 (10400) betas are calculated. No general trend or constancy has been seen in continuous or discrete betas, and no general correlation between them. Existence and importance of both continuous and discrete betas are demonstrated by related tests. Comparing continuous and discrete beta, show that, in addition to greater significance of discrete beta, the estimated jump beta is higher than the continuous beta almost 87% of the time; and on average jump betas are 180% higher than continuous betas. Both greater significance and greater values are resulted for discrete risk premium.
 

Keywords


1)     Aït-Sahalia, Y., & Jacod, J. (2009). Testing for jumps in a discretely observed process. The Annals of Statistics, 184-222.
2)     2. Aït-Sahalia, Y., & Jacod, J. (2012). Analyzing the spectrum of asset returns: Jump and volatility components in high frequency data. Journal of Economic Literature, 50(4), 1007-1050.
3)     Alexeev, V., Dungey, M., & Yao, W. (2017). Time-varying continuous and jump betas: The role of firm characteristics and periods of stress. Journal of Empirical Finance, 40, 1-19.
4)     Andersen, T. G., Bollerslev, T., & Diebold, F. X. (2007). Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility. The Review of Economics and Statistics, 89(4), 701-720.
5)     Andersen, T. G., Bollerslev, T., Diebold, F. X., & Wu, G. (2006). Realized beta: Persistence and predictability Econometric Analysis of Financial and Economic Time Series (pp. 1-39): Emerald Group Publishing Limited.
6)     Andersen, T. G., Bollerslev, T., Diebold, F. X., & Wu, J. G. (2005). A framework for exploring the macroeconomic determinants of systematic risk. Retrieved from
7)     Barndorff-Nielsen, O. E., & Shephard, N. (2006). Econometrics of testing for jumps in financial economics using bipower variation. Journal of financial Econometrics, 4(1), 1-30.
8)     Barndorff‐Nielsen, O. E., & Shephard, N. (2004). Econometric analysis of realized covariation: High frequency based covariance, regression, and correlation in financial economics. Econometrica, 72(3), 885-925.
9)     Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of political Economy, 81(3), 637-654.
10)  Bollerslev, T., Law, T. H., & Tauchen, G. (2008). Risk, jumps, and diversification. Journal of Econometrics, 144(1), 234-256.
11)  Chiarella, C., Dieci, R., & He, X.-Z. (2013). Time-varying beta: a boundedly rational equilibrium approach. Journal of Evolutionary Economics, 23(3), 609-639.
12)  Dungey, M., McKenzie, M., & Smith, L. V. (2009). Empirical evidence on jumps in the term structure of the US Treasury market. Journal of Empirical Finance, 16(3), 430-445.
13)  Dungey, M., & Yao, W. (2013). Continuous and Jump Betas: Firm and Industry Level Evidence.
14)  Fama, E. F., & French, K. R. (1992). The cross‐section of expected stock returns. The Journal of Finance, 47(2), 427-465.
15)  Fama, E. F., & MacBeth, J. D. (1973). Risk, return, and equilibrium: Empirical tests. Journal of political Economy, 81(3), 607-636.
16)  Hanousek, J., & Novotný, J. (2012). Price jumps in Visegrad-country stock markets: An empirical analysis. Emerging Markets Review, 13(2), 184-201.
17)  Henkel, S. J., Martin, J. S., & Nardari, F. (2011). Time-varying short-horizon predictability. Journal of financial economics, 99(3), 560-580.
18)  Huang, X., & Tauchen, G. (2005). The relative contribution of jumps to total price variance. Journal of financial Econometrics, 3(4), 456-499.
19)  Jensen, M. C., Black, F., & Scholes, M. S. (1972). The capital asset pricing model: Some empirical tests.
20)  Lahaye, J., Laurent, S., & Neely, C. J. (2011). Jumps, cojumps and macro announcements. Journal of Applied Econometrics, 26(6), 893-921.
21)  Lee, S. S., & Mykland, P. A. (2008). Jumps in financial markets: A new nonparametric test and jump dynamics. Review of Financial Studies, 21(6), 2535-2563.
22)  Liao, Y., Anderson, H. M., & Vahid, F. (2010). Do Jumps Matter?: Forecasting Multivariate Realized Volatility Allowing for Common Jumps: Australian National University,[College of Business & Economics].
23)  Lintner, J. (1965). The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets. The Review of Economics and Statistics, 47(1), 13-37. doi:10.2307/1924119
24)  Mancini, C. (2009). Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps. Scandinavian Journal of Statistics, 36(2), 270-296.
25)  Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of financial economics, 3(1-2), 125-144.
26)  Noureldin, D., Shephard, N., & Sheppard, K. (2012). Multivariate high‐frequency‐based volatility (HEAVY) models. Journal of Applied Econometrics, 27(6), 907-933.
27)  Patton, A. J., & Verardo, M. (2012). Does beta move with news? Firm-specific information flows and learning about profitability. Review of Financial Studies, 25(9), 2789-2839.
28)  Reeves, J. J., & Wu, H. (2013). Constant versus Time‐Varying Beta Models: Further Forecast Evaluation. Journal of Forecasting, 32(3), 256-266.
29)  Sayed, M., Dungey, M., & Yao, W. (2015). High frequency characterization of Indian banking stocks.
30)  Sharpe, W. F. (1964). CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK*. The Journal of Finance, 19(3), 425-442. doi:10.1111/j.1540-6261.1964.tb02865.x
31)  Todorov, V., & Bollerslev, T. (2010). Jumps and betas: A new framework for disentangling and estimating systematic risks. 157(2), 220-235.
32)  Zhou, H., & Zhu, J. Q. (2012). An empirical examination of jump risk in asset pricing and volatility forecasting in China's equity and bond markets. Pacific-Basin Finance Journal, 20(5), 857-880.