Realized Volatility in Noisy Prices: a MSRV approach

Document Type : Original Article


1 Department of Financial Management, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran; (corresponding author)

2 Department of Financial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.


Volatility is the primary measure of risk in modern finance and volatility estimation and inference has attracted substantial attention in the recent financial econometric literature, especially in high-frequency analyses. High-frequency prices carry a significant amount of noise. Therefore, there are two volatility components embedded in the returns constructed using high frequency prices: the true volatility of the unobservable efficient returns and the volatility from the existence of microstructure noise. Researchers proposed several methodologies for estimating these two components but each of these estimators has its own pros and cons. however, some of them have higher rate of convergence. Multi-Scale Realized Volatility (MSRV) is one of these estimators that reported to have a high efficiency in estimating true realized volatility. In this paper, after estimating these two components through the MSRV approach, we investigate the relation between them. Our results suggest that there is a positive meaningful relation between microstructure noise and true realized volatility.


1)     Aabo, T., Pantzalis, C., & Park, J. C. (2017). Idiosyncratic volatility: An indicator of noise trading? Journal of Banking & Finance, 75, 136-151.
2)     Adam, K., Marcet, A., & Nicolini, J. P. (2016). Stock Market Volatility and Learning. The Journal of Finance, 71(1), 33-82.
3)     Ahn, H.-J., & Cheung, Y.-L. (1999). The intraday patterns of the spread and depth in a market without market makers: The Stock Exchange of Hong Kong. Pacific-Basin Finance Journal, 7(5), 539-556.
4)     Ait-Sahalia, Y., & Xiu, D. (2012). Likelihood-Based Volatility Estimators in the Presence of Market Microstructure Noise. In L. Bauwens, C. M. Hafner, & S. Laurent, Handbook of Volatility Models and Their Applications (p. 348). John Wiley & Sons.
5)     Ait-Sahalia, Y., & Yu, J. (2009). High Frequency Market Microstructure Noise Estimates and Liquidity Measures. Annals of Applied Statistics, 3(1), 422-457.
6)     Ait-Sahalia, Y., Mykland, P., & Zhang, L. (2005). How often to sample a continuous-time process in the presence of market microstructure noise. Review of Financial Studies, 18(2), 351-416.
7)     Alòs, E., & León, J. A. (2016). On the short-maturity behaviour of the implied volatility skew for random strike options and applications to option pricing approximation. Quantitative Finance, 16(1), 31-42.
8)     Bandi, F. M., & Russell, J. R. (2006). Separating microstructure noise from volatility. Journal of Financial Economics, 79(3), 655-692.
9)     Bandi, F. M., & Russell, J. R. (2008). Microstructure noise, realized variance, and optimal sampling. The Review of Economic Studies, 75(2), 339-369.
10)  Barndorff‐Nielsen, O. E., Hansen, P. R., Lunde, A., & Shephard, N. (2008). Designing realized kernels to measure the ex post variation of equity prices in the presence of noise. Econometrica, 76(6), 1481-1536.
11)  Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., & Shephard, N. (2011). Subsampling realised kernels. Journal of Econometrics, 160(1), 204-219.
12)  Bauwens, L., Hafner, C. M., & Laurent, S. (2012). Handbook of Volatility Models and Their Applications. John Wiley & Sons.
13)  Black, F. (1986). Noise. The Journal of Finance, 41(3), pp.529-543.
14)  Blanchard, O. J., L'Huillier, J.-P., & Lorenzoni, G. (2013). News, Noise, and Fluctuations: An Empirical Exploration. The American Economic Review, 103(7), 3045-3070.
15)  Brown, G. W. (1999). Volatility, Sentiment, and Noise Traders. Financial Analysts Journal, 55(2), 82-90.
16)  Carr, P., & Wu, L. (2016). Analyzing volatility risk and risk premium in option contracts: A new theory. Journal of Financial Economics, 120(1), 1-20.
17)  De Long, J. B., Shleifer, A., Summers, L. H., & Waldmann, R. J. (1989). The size and incidence of the losses from noise trading. The Journal of Finance, 44(3), 681-696.
18)  De Long, J. B., Shleifer, A., Summers, L. H., & Waldmann, R. J. (1990). Noise trader risk in financial markets. Journal of political Economy, 703-738.
19)  Doman, M. (2010). Liquidity and market microstructure noise: evidence from the Pekao data. Dynamic Econometric Models, 10, 5-14.
20)  Gatheral, J., & Oomen, R. C. (2010). Zero-intelligence realized variance estimation. Finance and Stochastics, 14(2), 249-283.
21)  Griffin, J. E., & Oomen, R. C. (2011). Covariance measurement in the presence of non-synchronous trading and market microstructure noise. Journal of Econometrics, 160(1), 58-68.
22)  Hansen, P. R., & Huang, Z. (2016). Exponential GARCH modeling with realized measures of volatility. Journal of Business & Economic Statistics, 34(2), 269-287.
23)  Hansen, P. R., & Lunde, A. (2006). Realized variance and market microstructure noise. Journal of Business & Economic Statistics, 24(2), 127-161.
24)  Herskovic, B., Kelly, B., Lustig, H., & Van Nieuwerburgh, S. (2016). The common factor in idiosyncratic volatility: Quantitative asset pricing implications. Journal of Financial Economics, 119(2), 249–283.
25)  Hu, G. X., Pan, J., & Wang, J. (2013). Noise as Information for Illiquidity. The Journal of Finance, 68(6), 2341-2382.
26)  Itō, K. (2006). Essentials of Stochastic Processes. American Mathematical Society.
27)  Kupiec, P. H. (1996). Noise traders, excess volatility, and a securities transactions tax. Journal of Financial Services Research, 10(2), 115-129.
28)  Mancino, M. E., & Sanfelici, S. (2008). Robustness of Fourier estimator of integrated volatility in the presence of microstructure noise. Computational Statistics & data analysis, 52(6), 2966-2989.
29)  Morawski, J. (2008). Investment Decisions on Illiquid Assets: A Search Theoretical Approach to Real Estate Liquidity (1st ed.). Springer Science & Business Media.
30)  Orlitzky, M. (2013). Corporate social responsibility, noise, and stock market volatility. The Academy of Management Perspectives, 27(3), 238-254.
31)  Satchell, S., & Knight, J. (2011). Forecasting Volatility in the Financial Markets (3rd ed.). Butterworth-Heinemann.
32)  Seifoddini, J., Roodposhti, F. R., & Nikoomaram, H. (in press). Parametric Estimates of High-Frequency Market Microstructure Noise as an Unsystematic Risk. Journal of Money and Economy.
33)  Song, Z., & Xiu, D. (2016). A tale of two option markets: Pricing kernels and volatility risk. Journal of Econometrics, 190(1), 176-196.
34)  Tissaoui, K. (2012). The intraday pattern of trading activity, return volatility and liquidity: Evidence from the emerging Tunisian stock exchange. International Journal of Economics and Finance, 4(5), 156-176.
35)  Wang, F. (2016). An unbiased measure of integrated volatility in the frequency domain. Journal of Time Series Analysis, 37(2), 147-164.
36)  Xiu, D. (2010). Quasi-maximum likelihood estimation of volatility with high frequency data. Journal of Econometrics(159), 235–250.
37)  Zhang, L. (2006). Efficient estimation of stochastic volatility using noisy observations: A multi-scale approach. Bernoulli, 12(6), 1019-1043.
38)  Zhang, L., Mykland, P., & Ait-sahalia, Y. (2005). A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data. Journal of the American Statistical Association, 100(472), 1394–1411